
Mobility-Centric Host Stack for the Future Internet
Chunhui Zhang, Guanling Chen

Computer Science Department
University of Massachusetts Lowell

{czhang, glchen}@cs.uml.edu

Kiran Nagaraja, Ivan Seskar,
Dipankar Raychaudhuri

WINLAB, Rutgers University
{nkiran, seskar, ray}@winlab.rutgers.edu

Samuel Nelson1
Raytheon BBN Technologies

snelson@bbn.com

Abstract—The Internet is approaching a historic inflection point with
online wireless and mobile devices to far surpass wireline devices. The
current Internet architecture and dominant protocols such as TCP/IP,
which were designed and evolved on networks of fixed-hosts, are ill
equipped for this fundamental shift.

In this paper we introduce an alternative future Internet architecture,
MobilityFirst, that prioritizes mobility and trustworthiness. Specifically,
we present the design of a novel host protocol stack and network API,
which when working with MobilityFirst in-network services (incl. fast
mobility tracking, multipoint delivery, in-network cache and computing)
offers intrinsic support for host mobility, eases simultaneous access to
multiple networks (multi-homing), and enables the content and context-
centric applications.

We present prototype implementations of the stack for Linux
and Android platforms including a dual-home ready HTC EVO
4G(WiMAX)/WiFi smartphone. Early experiments demonstrate the ben-
efits of our stack, including: 1) performance comparable or better than
present Internet stack, and it allows devices to 2) opportunistically exploit
multi-homing for better performance and robustness for data transfers
under mobile scenarios.

I. INTRODUCTION

Two recent and related phenomena are projected to drasti-
cally change the Internet landscape. First, the proliferation of
mobile devices, both economical and resourceful, is creating
a vastly different composition of hosts than at anytime in
the Internet’s history. The current architecture, conceived and
evolved a fixed-host model, should be revisited to fundamen-
tally address mobility related issues. Second, the pervasive
availability of both programmable mobile devices as also
Internet connectivity (4G, WiFi, Bluetooth, etc.) is unarguably
spawning the development of a new generation of applications
that are eager to harness location and context information to
deliver rich, collaborative content and communication services
to mobile users. The current software stack solutions on offer
are overlay and encumbered in high-level protocol implemen-
tations, thus inefficient and less intuitive. In the recent ongoing
clean-slate Internet design effort [1]–[6], it is believed that
new, natively supported, extensible network and host services
are required to assuredly support the future Internet.

MobilityFirst [1], as the background project of this work,
targets a scalable Internet protocol architecture for both mobile
and fixed host based on several key components that address
challenges from mobility to new generation applications in a
manner very different from todays dominant Internet proto-
col - TCP/IP. The key design features of a mobility-centric
architecture include:

1The work was done while the author was at WINLAB.

Location-independent naming for network objects. An im-
portant design principle to support mobility is to separate
names of network-attached objects from their route-able net-
work address. A network object is assigned a globally unique
identifier (GUID) and a fast global directory is used to
track and dynamically resolve the current network address
of the object. Present solutions, including Mobile IP [7], a
popular mobility solution for 4G/cellular networks that uses
a home agent to redirect traffic when away, deliver sub-par
performance and present considerable scalability challenges.

Simultaneous and converged access to multiple networks for
mobile hosts. An increasingly common scenario is for mobile
devices to have a choice of multiple access networks. Current
IP-based stacks make it difficult for simultaneous and con-
verged use of multiple network attachments. In MobilityFirst,
the separation of naming from network location enables a host
to attach to several networks and maintain multi-presence with
a single network name.

Robust and efficient data delivery to mobile hosts despite
unreliable access networks. Poor performance of end-to-end
transport protocols in wireless environments is well known [8],
[9] In addition, mobile hosts could face intermittent discon-
nection due to link, coverage or handover issues, resulting in
poor data delivery efficiency. In MobilityFirst, we propose the
use of a hop-by-hop approach to incrementally progress data
towards destination and exploit router storage to temporarily
buffer data to handle the above mobility related issues.

Native support for new generation of content and context
applications. Multiple favorable factors are together fueling
a new generation of applications that aim to deliver rich,
context sensitive media experiences to mobile devices. Group
communication, a staple of social interaction, is poorly sup-
ported by the network, for example. In MobilityFirst content
and context are treated as first-class network objects and
are named and located similar to hosts. Further, content and
context applications can exploit efficient support for multi-
point communication including multicast services.

The protocol stack design and network API proposed in this
paper address these primary challenges of the future Internet
and provide an effective interface to access services within a
MobilityFirst network.

The main contributions of this work are:
1) The reference design of a host protocol stack and GUID-

based message-oriented network API for the future
Internet architecture to address critical mobility-related

303978-1-4799-3494-2/14/$31.00 ©2014 IEEE ICUFN 2014

Fig. 1: Overview of MobilityFirst architecture.

challenges and provide new service abstractions for
content and context-centric applications.

2) Prototype implementations of the protocol stack and
network API on Linux and Android platforms. We
also present benchmark evaluations that demonstrate
competitive performance against current IP stack.

The rest of this paper is organized as follows: Section II
presents background on services supported by a MobilityFirst
network. Section III presents our design of the protocol stack
and network API, and Sections IV and V present the details
of our prototype implementation on Linux/Android platforms
and performance evaluation of the same. Finally, Section VI
concludes with future work.

II. BACKGROUND: MOBILITYFIRST ARCHITECTURE

Figure 1 shows the overview of the MobilityFirst network
architecture. The core architectural proposal is the clean sepa-
ration of names of network objects (laptops, sensors, services,
content, etc.) from their topological network addresses. The
translation from an object’s human-readable name (HRN) to
its address proceeds in two levels. The HRN is first mapped to
a globally unique identifier (GUID), a flat identifier that is also
a public-key. Then, for a network-attached object, the GUID
is bound to a network address (NA) that allows packets to be
routed to the attachment point. MobilityFirst proposes a fast
and scalable Global Name Resolution Service (GNRS) [10]
that enables the dynamic resolution of a GUID to its latest
NA. GNRS evaluations with Internet scale topologies have
yielded sub-100ms lookup latencies.

Dynamic Name-to-Address Binding. A data block in Mobil-
ityFirst can be routed entirely based on its destination’s flat
GUID within a single network. A general case though requires
a lookup to the GNRS to identify the destination network. It is
early-binding when it happens at the source. Once bound, data
is routed along a fast path to destination network where local
routing is invoked. In addition, routing elements along the
way may re-query the GNRS at any point to obtain the latest

address of the destination. This late-binding enables successful
delivery in high-mobility cases.

Robust and Efficient Data Delivery. To address poor per-
formance in wireless environments of end-to-end transport
protocol like TCP, MobilityFirst proposes reliable data trans-
fer service in a hop-by-hop manner [11]. Here application
messages are segmented into large blocks (a megabyte or
larger), with each block transferred reliably from node to
node. Lost packets need not be retrieved from end hosts, but
rather from previous hop, with significant savings especially
with intermittent problems in wireless access networks. At
the same time, a generalized storage-aware routing (GSTAR)
approach [12] exploits router storage to temporarily store
data blocks to overcome intermittent link quality fluctuations.
Earlier work on such a Cache-and-Forward (CNF) architec-
ture [13], demonstrated the benefit of storage-aware routing
algorithms which consider long- and short-term path quality
metrics while making forwarding decisions. GSTAR further
integrates DTN capabilities with CNF-like storage routing to
provide a seamless solution for a wide range of wireless access
scenarios.

Multipoint Delivery and Other In-Network Services. Sev-
eral other features in MobilityFirst are built on a service-
oriented network core. These include native support for mul-
ticast, anycast, multi-path and multi-homing delivery services.
The delivery intent, specified by end-hosts and carried with
each self-contained routeable data block, is inspected by each
routing element on the path to determine the specific service to
be administered. In addition to native services, MobilityFirst
proposes a pluggable compute layer into the network core.
Custom services implemented and deployed at a router’s com-
pute plane, for example, may then provide in-transit services
such as encryption, VPN, transcoding, etc. Furthermore, the
services architecture is extensible to enable introduction of
unforeseen services in the future.

III. PROTOCOL STACK AND API DESIGN

Figure 2 shows the layers of the MobilityFirst protocol
stack. The major difference with current Internet stack is
the introduction of a new GUID-based narrow waist - GUID
services layer - replacing IP. Diversity exists both in layers
above (e2e transport and above), as well as below this layer.
The GUID services and the storage-aware routing layer are the
network layer. Also the hop-by-hop link data transport layer
shown in the figure is more akin to the link data transport
of a traditional link layer. In-network elements (e.g., routers)
implement layers network and below, while end-hosts in ad-
dition implement transport and higher functionality, including
an API for end application access to the MobilityFirst network
services. The network API enables a high-level intent-based
messaging interface that decouples applications from having to
reason about low level network details including interface mul-
tiplicity, network addresses and mobility challenges thereof.

304

Link Layer A
(e.g. WiFi)

Link Layer A
(e.g. WiMax)

Hop-by-Hop Block Transfer Protocol

Storage-Aware Routing (GSTAR)

GUID Service Layer

E2E
Transport
Protocol A

E2E
Transport
Protocol B

App1

API

App2

API

(a) Layering

Protocol Layer Primary Functions
Application GUID-based messaging API
End-to-End Transport message segmenting; end-to-end reliability
GUID Services GUID publishing; networking address

lookup and binding; application multiplexing
Storage-Aware Routing flat-address routing; data buffering to miti-

gate congestion, link unreliability and dis-
connection

Link Data Transport block fragmentation and reliable transfer to
next hop

(b) Functions

Fig. 2: Protocol layering in MobilityFirst host stack

A. Network Service API

The API provides applications with GUID-based endpoint
addressing and a connection-less, message-oriented interface
to send and receive data. While keeping the simplicity of a
socket-like access, the API adds new interfaces to directly
address using GUIDs service end-points, content and context
objects over the network. It also enables access to in-network
delivery, compute and storage services such as caching, any-
cast retrieval, multi-point delivery, etc. The clean separation
of name from address using GUIDs, dynamic resolution,
along with in-network buffering of data messages decouple
applications from burden of handling mobility challenges.
Native support for services such as content-retrieval, multi-
homing, and group communication (multicast/anycast) eases
the efficient realizations of advanced and novel applications.

API Methods. Figure 3 lists the basic API methods. It allows
application end points to declare their identity and network
presence (open, attach), state communication intent including
transport, security and delivery options (open, send, get), data
receipt intent (recv), and request in-network services (send,
get) such as content resolution/retrieval/caching or other com-
pute plane services. Furthermore, we propose to use network-
interaction profiles that map application communication intent
(e.g., loss-tolerant real-time streaming) to specific stack and
network service (e.g., transport with no end-to-end ACKs,
REALTIME delivery) to further ease writing networking ap-
plications.

B. Protocol Layering in Host Stack

End-to-End Transport Layer. The transport layer segments
an application message into large data blocks (chunk or
PDU) and reassembles on recipient. A chunk represents an
autonomous routable data unit, after a routing header is added
in the network layer. A chunk’s size is not preset (as large
as hundreds MBytes), and can be negotiated with the final
recipient, to accommodate any resource limitations. This layer
may also provide end-to-end flow-control and ACKs.

GUID Services Layer. Primary function of this network sub-
layer is to provide lookup services for resolving NA for a des-
tination GUID. A lookup is executed indirectly through config-
ured local GNRS agents (a host daemon or network gateway).

handle open (profile, src-GUID, profile-opts)
A profile declares the customization of the stack such as choice of
transport and security features for the duration of a session. Applications
can either define and register a profile or subscribe to a predefined profile
suited to their intent. profile-opts parameterize a profile and are passed
in the URL parameter passing style. Optional source GUID identifies
the initiating end-point and results in an update to the GNRS. A handle
representing the created network endpoint is returned.

send (handle, message, dst-GUID, service-options)
Applications send data as messages addressed to destination GUID. There
is no limit on the size of the message, except as limited by system
resources. The service-options declare the set of delivery and in-network
services requested. Options include: MULTICAST, ANYCAST, CACHE
(a directive to allow caching), MULTI-PATH, DTN (delay-tolerant),
REALTIME (with delay constraints), and COMPUTE (with GUID of
compute service).

recv (handle, buffer, GUID-set)
Applications receive messages by passing pre-allocated message buffers.
The optional GUID-set contains the set of GUIDs intends to receive from.
In an asynchronous realization, a descriptor with details is returned on a
valid message receipt.

get (handle, content-GUID, buffer, service-options)
Content-centric applications can utilize native network support for content
discovery and retrieval of content by its GUID alone. If service-options
includes ANYCAST then the content retrieval is attempted from the
closest source (from among replicas known to network via GNRS).

attach (handle, GUID-set)
Publishes network reachability for the specified GUID(s). GUID services
layer initiates an association request for each GUID and the network
“attaches” the object and publishes the locator binding to GNRS.

close (handle)
Terminates a session and clears any stack state, including the network
attachment state by sending a disassociation request to the network.

Fig. 3: Network Service API

It also provides NA resolution for locating in-network compute
services (e.g., content cache, context/mobility services, etc.)
requested by data packets.

This layer is also responsible for announcing network
reachability for local endpoints. Objects such as a service
or content can indicate such network presence intent through
network API (open or attach). An association protocol with the
network gateway (e.g., access point or BSS) advertises each
object’s identity, resulting in (<GUID, NA>) mappings being

305

published to the GNRS. Note that the association message is
duplicated on each connected network interface on the device,
but a preference may also be stated. GUID layer also manages
life-cycle of an attached object by sending periodic keep-alives
and initiating a disassociation on session termination.

In contrast to current Internet stack’s use of transport layer
ports, MobilityFirst can use a GUID to both identify an end-
point locally and its reachability at the network level. An end-
point that is not uniquely identified locally (e.g., app uses one
GUID for multiple end-points) is accorded a unique end-point
identity by this layer - a service similar to NAT. If a spare valid
GUID is unavailable, however, an application label/index may
be used to arrive at a cryptographically mutated GUID (with
app GUID as base) for the endpoint.
Storage-Aware Routing Layer. In the current IP-stack, this
is based on routing tables and manually pre-configured. The
path taken is dependent on destination address chosen. In our
stack, a network interface manager receives input from user
preferences, network state (link quality), and application intent
to decide the route. In the simplest case a user preference
overrides all other inputs to use one interface over all others
for outgoing data.

In ad hoc mode, the host stack can function as a router and
will then implement the generalized storage-aware routing pro-
tocol (GSTAR) [12]. GSTAR is designed to adapt to networks
with varied degrees of connectivity including wired, wireless
and DTN-type networks where partitioning and disconnections
are common. In this mode, the stack can store in-transit chunks
to overcome intermittent disconnections and bad link quality
to the next intended hop.
Link Data Transport Layer. The link layer is made up of two
sub-layers. First, is the traditional link layer, and second, is the
hop-by-hop block data transfer layer. The functionality of the
hop layer is to: 1) take chunk from the network layer, fragment
into PHY suitable packets, and hand them to traditional link
layer; 2) to implement a control protocol for reliable transfer
of all packets between local and next hop; and on the receiver
side, 3) to receive and aggregate all data packets belonging to
a chunk from the upstream node and deliver to network layer.
A chunk that fails to transfer to the next hop is handed to
routing layer to be re-routed or stored temporarily.

IV. IMPLEMENTATION

The goal of our implementation is to show that a future
Internet stack can be feasibly implemented in a wide range
of current technologies and OSes (e.g., Android, Linux). It
not only enables new services that are difficult to realize
with TCP/IP, but also provides significant performance gain.
Our implementation takes the form of a standalone, multi-
threaded user-level process. It is written in C++ with no major
library dependencies, making it amenable for kernel ports or
deployments on embedded platforms as well. It uses libpcap
for low-level interaction with networks to be able to capture
and inject packets.
Stack Components. The stack process is implemented using
three major threads (main, packet capture, network manager).

API

Trans
Port A

Routing

Hop

Network
Manager
(Thread)

Timer for HOP
(Thread)

Packet
Capture
(Thread)

Data Out/Association Report,
Link Probe Response

Data In/Link Probe Request

Handlers

Chunk Buffer

Event
Processing

1 2 3 4 5

6
7

8

9
10

Events:

1) Open
2) Send
3) Receive
4) Get
5) Close
6) Initial Report
7) Interface State Update
8) Csyn Timeout (HOP)
9) Csyn Ack (HOP)
10) Chunk Complete

Client Stack

Trans
Port B

GUID service

Main Thread

Fig. 4: Client Stack Implementation

Protocol layers (transport, GUID service, network, link/hop)
are implemented as classes and utilized by main thread. Multi-
ple classes are implemented for different end-to-end transport
protocols and they could be selected by the stack-option of
“Open” API call.

The packet capture thread which belongs to the link/hop
layer runs “pcap loop” on each available interface and respon-
sible for aggregating captured packets to larger data chunk.
We make packet capture a thread so that the stack could
support simultaneous incoming and outgoing traffic where the
outgoing traffic is directly handled by the main thread.

The network manager thread which is owned by the network
layer is responsible for making the decision of which interface
to use by applying user policies against the current contexts
(such as RSSI) of the interfaces. We abstract this part of the
network layer functionality as a separate thread because the
interface contexts need to be constantly monitored and the
operation such as getting the WiFi interface RSSI is lengthy.
We implements three policies including “WiFi Only”, “Mobile
Only” and “Best Performance.” They are stored in an XML
file and users could change the policy at runtime using our
configuration tool.

Another important component is the Buffer Pool which is
implemented as a list of MTU-sized buffer cells. The data
from apps are put into the right place in each buffer cells
(leave proper head room for the protocol headers to avoid
unnecessary memory copy) under the collaboration of main
thread and the API library. For receiving, the packet capture
thread uses it to store the received packets and then aggregates
them into data chunks.

Event-Driven Stack Execution. As shown in Figure 4, the
threads communicate with each other using event messages
over local UNIX sockets (AF LOCAL). The main thread runs
in an infinite loop waiting for events to occur and invokes
a corresponding handler method to process an event. The
following are the main events handled by the main thread.

The API events falls into the first category and each API
method has a related event. For example, when an app calls

306

open, API library sends a message to main thread and in turn it
parses the stack options and configures the stack according to
the request. Taking send as another example, the main thread
prepares the buffer in the Buffer Pool, receives the data from
the application and then sends the data out when the SEND
event is triggered by the API library.

The Packet-Capture events, i.e., the events generated by
the packet capture thread fall into the second category. Two
example events are CHUNK-COMPLETE and CSYN-ACK-
TRIGGER. CHUNK-COMPLETE is triggered when a chunk
is completely received thus the main thread can fetch the chunk
from the Buffer Pool and deliver it to the application. csyn-
ack is a control message of the Hop protocol. In Hop protocol,
after sending out a group of packets representing a chunk, the
sender sends a csyn message which is then acknowledged with
a csyn-ack containing a bitmap indicating the received packets
by the receiver. The sender then follows up with sending the
unreceived data packets. This process will be iterated until
a chunk is completely received. In our implementation, the
packet capture thread sends a CSYN-ACK-TRIGGER to the
main thread asking it to reply the sender with a csyn-ack
message since packet capture thread is only responsible for
receiving.

The third category includes two network manager events
i.e. INITIAL-REPORT and INTERFACE-STATE-UPDATE.
INITIAL-REPORT is generated during the stack boot. With
this event, network manager thread reports the interfaces
information including MAC addresses and the preferred inter-
faces according to the user policy. The INTERFACE-STATE-
UPDATE message is sent periodically telling the main thread
the availability or the preference change of the interfaces.
Upon receiving this message, the main thread initiates an
‘association report’ through the preferred interface (or all)
to the network announcing network reachability of GUIDs
presently associated with the stack.

API Library and Applications. The API library is imple-
mented in C and compiled by GCC and Android NDK for both
PC and Android platforms. Unix local socket (AF LOCAL)
is used for the IPC between API library and the stack. We
define two channels, one for control message and another
for app data. For example, on invoking a send method, the
library sends a SEND message to the stack. The stack then
prepares the buffers and the data channel and sends back a
SEND-REPLY message. The library follows up with sending
the actual data.

We developed two demo applications utilizing this API. A
content sender and a receiver. The receiver is as simple as
trying to receive a fixed amount of data. The sender tries
to send a large file over to the receiver. In addition, a video
steaming app is under development based on this API.

Smartphone Implementation. To validate stack operation
including multi-homing functionality on a phone, we imple-
mented our stack on the Sprint Evo 4G phone with WiFi and
WiMAX interfaces. It is amply equipped with Qualcomm’s
1GHz Snapdragon processor, 512MB eDRAM memory and

Fig. 5: Comparing data transfer rates with IPv4 stack

Fig. 6: Use of ‘best’ connection in multi-homed hosts

runs Android version 2.3. For multi-homing tests, however,
the phone’s runtime prevented simultaneous operation of both
interfaces. We believe this is not a basic limitation and will
be commonly available with better equipped future phones
(i.e., longer battery lifetimes and improved communication
efficiency). A simple workaround was to use the WiFi interface
in the supported HotSpot mode, which allowed both interfaces
to operate simultaneously. In addition, to run libpcap for
raw messaging from our custom stack, the phone requires
to be rooted. While this is done easily for our experiments,
it is an adoption concern for opt-in users. Near term, we
are considering an IP-tunneling approach to MobilityFirst
network gateways to mitigate this concern. In addition, we
have extended our C API to Java, which allows easy Android
SDK implementation of MobilityFirst apps.

V. EVALUATION

To get a basic understanding of the performance and the
functional capability of our implementation we conducted two
benchmark experiments on the Orbit testbed [14]. The testbed
consists of a 400-wireless-node grid and several smaller sand-
boxes with 2 to 8 nodes. Specifically, our experiments were
on an 8-node sandbox where each node has both Atheros
WiFi b/g/n and Intel WiMAX cards connected directly to a
contained RF-matrix. The matrix allows control of the RF-
attenuation between a pair of cards, making it suitable for
emulating variable link quality.

In the first experiment, we compared one-hop raw perfor-
mance of data transfer over WiFi ad-hoc connection under

307

various link quality between our stack and current TCP/IP
stack regardless of the management aspects of the stack such
as congestion control and flow control. Aforementioned file
sender and receiver demo apps were used in this experiment.
We sent a large file from the sender node to the receiver node
and for TCP/UDP, we used Iperf to send overloaded single
flow traffic from the sender to the receiver.

Figure 5 shows the data rate of stack-to-stack data transfer
with WiFi ad-hoc connection set to 54 Mbps as we varied link
quality from best to the point of disconnection. Comparing to
the one-hop TCP data rate, our stack outperforms by as much
as 30%. It is reasonable to make this comparison, instead of
comparing against UDP, since both protocol stacks ensure data
reliability. In the future, we plan to set up multi-hop topology
to make the further comparison. Even comparing to UDP, the
result suggests our stack exposes little overhead by offering
the reliability of data transfer.

The second experiment is to demonstrate the ability of
dynamically selecting the best interface/route based on the
contexts (e.g. RSSI) in a multi-homed host at the stack level.
This capability can be activated by the ‘Best Performance’
user policy in our design. Specifically, this policy works as
follows: use WiFi interface if the WiFi signal is better than
-95 dBm otherwise use WiMax interface. In our simple set
up, we allowed two nodes to connect with each other over
both WiFi and WiMAX networks and trigger a file transfer
between the two nodes. Then we emulated the scenario of
one node moving out of WiFi coverage momentarily while
still connected over WiMAX by injecting noise through the
RF-Matrix to the WiFi connection.

Figure 6 shows the data transfer rate over time during
this experiment. Note although the chunk number is used
for the y-axis, it is really means the time since we sent
from chunk number 1 to 10 over time. During the transfer
of the first 5 data chunks, we changed the WiFi signal level
from -65 dBm to -97 dBm. While receiving the 5th chunk,
the receiver stopped replying the control message (CSYN-
ACK, one for each chunk) through the WiFi interface due
to the bad signal which dropped below -95 dBm. At the same
time, the receiver started to send ‘Association Report’ through
the WiMax interface. Thus, the sender turned to the WiMax
interface starting by re-sending the 5th chunk which failed
with the WiFi interface. As Figure 6 shows, chunk 5, 6 and
7 were sent through the WiMax interface achieving a data
rate slightly less than 1 Mbps which is the expected WiMAX
uplink rate (with two nodes connected through a BS, one link
is uplink). We then gradually decreased the RF attenuation to
bring back the good signal for WiFi, and network layer again
switched back to utilizing the WiFi interface.

VI. CONCLUSION AND FUTURE WORK

In this paper we present the design and implementation
of a host stack for a future Internet architecture, Mobility-
First, to address many challenges faced by today’s IP stack.
The novel design features of MobilityFirst include: location-
independent naming for network objects; simultaneous and

converged access to multiple networks for mobile hosts; robust
and efficient data delivery to mobile hosts despite unreliable
access networks; and native support for new generation of
content and context applications. The evaluation of the host
stack supporting these features shows significant performance
improvement (e.g. 30% reliable file transfer compared against
TCP/IP) and flexible in-network mobility support (e.g. multi-
homing with user-configurable mobility policies). We would
like to direct you to [15] for more recent progress and
findings about MobilityFirst project. In the future, we plan
to explore context centric applications including for vehicular
contexts. Extensions to interface sensor platforms are also
being pursued.

ACKNOWLEDGMENT

This work is supported partly by the National Science
Foundation under Grant No. 1040725 and No. 0917112.
Any opinions, findings, and conclusions or recommendations
expressed in this work are those of the author(s) and do
not necessarily reflect the views of the National Science
Foundation.

REFERENCES

[1] D. Raychaudhuri, K. Nagaraja, and A. Venkataramani, “Mobilityfirst:
A robust and trustworthy mobility-centric architecture for the future
internet,” SIGMOBILE Mob. Comput. Commun. Rev.

[2] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in Proc. of ACM
CoNEXT, 2009.

[3] “Networking Technology and Systems: Future Internet Design (FIND),
NSF program solicitation,” 2007.

[4] M. Lemke, “Position statement: FIRE, NSF/OECD workshop on social
and economic factors shaping the future of the internet,” January 2007.

[5] “Fp7 information and communication technologies: Pervasive and
trusted network and service infrastructures, european commission.”

[6] “New Generation Networks,” http://www2.nict.go.jp/w/w100/index-e.
[7] “IP Mobility Support for IPv4,” http://tools.ietf.org/html/rfc3344.
[8] S. Farrell, V. Cahill, D. Geraghty, I. Humphreys, and P. McDonald,

“When tcp breaks: Delay- and disruption- tolerant networking,” IEEE
Internet Computing, vol. 10, no. 4, pp. 72–78, 2006.

[9] M. C. Chan and R. Ramjee, “Tcp/ip performance over 3g wireless links
with rate and delay variation,” Wireless Networks, pp. 81–97, 2005.

[10] T. Vu, A. Baid, Y. Zhang, T. D. Nguyen, J. Fukuyama, R. P. Martin,
and D. Raychaudhuri, Technical Report WINLAB-TR-397 - DMap: A
Shared Hosting Scheme for Dynamic Identifier to Locator Mappings in
the Global Internet, Fall 2011.

[11] M. Li, D. Agrawal, D. Ganesan, and A. Venkataramani, “Block-switched
networks: a new paradigm for wireless transport,” in Proc. of NSDI,
2009.

[12] S. C. Nelson, G. Bhanage, and D. Raychaudhuri, “GSTAR: generalized
storage-aware routing for mobilityfirst in the future mobile internet,” in
MobiArch ’11. New York, NY, USA: ACM, 2011.

[13] S. Gopinath, S. Jain, S. Makharia, and D. Raychaudhuri, “An experi-
mental study of the cache-and-forward network architecture in multi-hop
wireless scenarios,” in Proc. of LANMAN, 2010.

[14] D. R. at el., “Overview of the orbit radio grid testbed for evaluation of
next-generation wireless network protocols,” in IN PROCEEDINGS OF
WCNC, 2005, pp. 1664–1669.

[15] “MobilityFirst,” http://mobilityfirst.winlab.rutgers.edu/.

308

