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Abstract—The prominence of wireless, mobile devices on the
Internet today has motivated numerous protocols and architec-
tures, such as the MobilityFirst Future Internet Architecture
project. In this work, we present a robust, local-scale, storage-
aware routing approach, called GSTAR, for use in Mobility-
First networks. GSTAR unifies techniques from MANET and
DTN routing protocols. This unification with in-network storage
enables it to overcome mobility-related challenges such as link
quality variation, node disconnection, and network partitioning.
Through NS3-based simulation, we show that GSTAR outper-
forms traditional link-state protocols for both wireless and hybrid
wired-wireless network environments.

I. INTRODUCTION

The recent proliferation of wireless, mobile devices ne-
cessitates flexible, efficient and robust support of mobility
services in the future Internet [1]. To address the challenges
associated with the future mobile Internet, several “clean-
slate” proposals have recently been funded by government and
private entities [2], [3], [4], [5], [6], [7]. One NSF-funded
Future Internet Architecture (FIA) project, called Mobility-
First, is geared around the principle that mobile devices and
associated applications must be treated as first-class Internet
citizens. Traditionally, the challenges associated with mobility
and wireless communication were partitioned from the core
Internet and handled as a “last hop” problem. However, with
the prevalence of hand-held and other wireless devices, we
envision a future Internet where networks are not strictly
characterized (e.g., core vs. access, wired vs. wireless, ad-hoc
vs. managed) but are fluid and highly heterogeneous.

A few unique challenges associated with mobile devices are
varying levels of disconnection, multi-homing, and dynamic
formation of networks. While subsets of these challenges have
been considered for ad-hoc and disruption-tolerant networks
(DTNs), a unified approach within a future mobile Internet
framework has not. To this end, this paper expands the GSTAR
(generalized storage-aware routing) protocol [8] proposed in
conjunction with the MobilityFirst architecture. In particular,
we present and evaluate a unified intra-domain routing proto-
col capable of achieving high performance across a wide range
of mobile environments, such as wireless mesh, wireless ad-
hoc, DTN, and even relatively stable wired networks.

The main observation behind GSTAR is that the addi-
tion of in-network storage enables routers to handle network
fluctuations. GSTAR operates on the principle that mobility-
related challenges are best handled directly at the networking
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layer itself. GSTAR is essentially a storage-aware link-state
routing protocol that enables routers to temporarily store
and/or replicate data in response to detected network problems.

The main contributions of our work are three fold. First, we
present the design of GSTAR, an intra-domain storage-aware
routing protocol that proactively and intelligently makes path
selection and transmission decisions based on network factors
such as link quality fluctuation, congestion, and disconnection.
Second, we present both comparative and parameter space
exploration results from NS3 simulations of GSTAR. Third,
we explore a robust storage-aware path selection metric that
can react to fluctuations in the network.

The remainder of this paper is as follows. Section II explores
the challenges and design goals for routing in the future mobile
Internet. Section III presents the GSTAR protocol as well
as a generalized model for path selection in storage-aware
routing systems, and shows how to instantiate such a model
in GSTAR. Section IV presents a comparative, NS3-based
evaluation including an exploration of the parameter space of
GSTAR. Finally, Section V concludes the paper.

II. SUPPORTING MOBILITY IN THE FUTURE INTERNET

The future Internet will contain end-points, and even net-
works, that are highly mobile, forcing a redesign of both core
and edge protocol. This section presents a brief overview of
MobilityFirst, a future Internet architecture project which pro-
vides the framework and architecture for GSTAR. Following
this, challenges and design decisions of local routing in the
future Internet are explored, providing motivation for GSTAR.

A. MobilityFirst

MobilityFirst takes the stance that applications should be
able to communicate directly with abstract entities, including
end devices, content, and context. Furthermore, the applica-
tion, and even the entire end client, should not care where the
entity currently is. Instead, the network itself should resolve
physical routing identifiers for the entity and progress the
message. This architecture brings together five core principles:
(1) separation of naming and addressing, (2) support for late
or progressive binding, (3) support for group-based paradigms,
such as anycast and multicast, (4) the ability for the network
itself to deal with all forms of mobility in a unified manner
and (5) hop-by-hop transport of large data units.

In MobilityFirst, all entities are named via a flat, location
independent structure called the globally unique identifier,
or GUID. A large-scale, distributed system called the global



Fig. 1. MobilityFirst Architecture

name resolution service, or GNRS, is responsible for binding
GUIDs to routable addresses and is directly queryable by
routers. This is illustrated in Figure 1. Routing protocols take
advantage of in-network storage and the ability to dynamically
query the GNRS to update the GUID-to-address mappings
when needed. For more information, refer [9], [8].

B. Challenges in Local-Scale Routing

Mobility of wireless devices leads to a number of challenges
not addressed by current local-scale (intra-domain, ad-hoc,
mesh, etc.) routing protocols, such as a high degree of bit rate
fluctuation, multi-homing, and node or network disconnection.
The DTN community has used techniques such as message
replication [10], [11], [12] and hop-by-hop transport [13] to
help address some of these challenges and bridge partitions
in the network. To a lesser degree, the ad-hoc community has
explored storage-aware routing in a link-state fashion, partic-
ularly with CNF [14]. GSTAR is a unified solution bridging
the two domains and the usage scenarios in-between. While
merging DTN and MANET protocols has been considered in
literature, these approaches usually require specialized nodes
(e.g., ones with DTN capability) [15], [16], or are simply
using one approach to extend the other [17]. By unifying
techniques from MANET and DTN protocols, GSTAR is able
to smoothly transition between both types of environments.
Further, GSTAR has been designed to work well in access
networks with a mix of wired and wireless components, and
functions as an efficient intra-domain routing protocol similar
to OSPF when the network is mostly well-connected.

The key to supporting unpredictable mobility in the future
Internet is to handle the challenges of mobility directly at
the network layer. In order to give routers the freedom to
handle mobility challenges directly, path quality information
must be exposed to the routing protocol, and resources must
be available to respond to problems. In particular, storage
is a highly useful resource when handling the challenges of
mobility, as shown by the DTN community, and is relatively
cheap. We envision future routers to have an abundance of
storage directly accessible by the network layer. GSTAR aims
to directly address the challenges of mobility from both an
ad-hoc and DTN perspective by providing both fine-grained
topology and link quality information to nodes within a single
partition, as well as course-grained connection probability
information to all nodes in the network.

Fig. 2. GSTAR

III. ROBUST ROUTING WITH GSTAR

GSTAR is a combination of techniques used in MANET
and DTN routing protocols. This merging of protocols with in-
network storage enables it to overcome mobility related chal-
lenges such as link quality fluctuations, node disconnection,
and network partitioning. GSTAR provides next-hop informa-
tion based on the current link qualities between the nodes in
the network. The routing decisions are made on set of data
packets called chunks. These chunks are transmitted reliably
in a hop-by-hop fashion under a GUID-based destination. In
this section, we present GSTAR details.
A. Protocol Overview

Each node in the network uses two types of topology
and path quality information (Figure 2) while deciding to
proactively store or push out messages. The first, called intra-
partition graph, is maintained via Flooded-Link State Adver-
tisements (F-LSA). F-LSAs carry fine-grained, time-sensitive
information about the links in the network. The second, called
DTN graph, is maintained via epidemically Disseminated-
Link State Advertisements (D-LSA). D-LSAs carry connection
probabilities between all nodes in the network.

The autonomous unit of data transmission at the network
layer is the chunk. Each node first searches its intra-partition
table for the destination address and proactively stores the
chunk if the path is of low quality. If no end-to-end path
exists for the destination; the node checks the DTN table. In
this case, the node proactively pushes the message by using a
probabilistic view of the network.
B. Proactive Control Message Dissemination

All GSTAR nodes periodically broadcast link probe mes-
sages to learn about their current 1-hop neighbors and cor-
responding link quality estimates in the form of Expected
Transmission Time (ETT). This enables a node to update a
running database of contact probabilities with all other nodes.

All nodes periodically flood F-LSA messages containing
time-sensitive, fine-grained information regarding the local 1-
hop neighbors. These messages are received only by the nodes
in the current partition. For example, in Figure 2 F-LSA of
node 1 are received by node 2 and node 3 only. Each F-
LSA message contains the node’s current storage availability,
a list of current 1-hop neighbors, and the short and long term
ETTs associated with each of these 1-hop neighbors. The short
term ETTs can be computed locally by taking the average
of the last three ETTs. Long term ETTs are computed as an



average of short term ETTs. Section IV provides a simulation-
based exploration of the performance gains related to how
LETTs are computed. As as baseline, we assume LETT =
α · SETT + (1− α) · LETT , where α is a weighting factor
we explore via simulation. Intuitively, capturing the quality of
a link over time would depend on many factors such as if the
link is periodically bad or not. If so, then more weight should
be placed on past values. However, this is not true if the link
abruptly becomes poor, since past information is less relevant.

Finally, in order to bridge partitions that may form in
the network, all nodes epidemically disseminate information
about connection probabilities between all other nodes in the
network. When a node receives a D-LSA message, it not only
sends it to all of its neighbors, but also carries it indefinitely,
giving a copy to all other nodes it meets. Thus, in the network
of Figure 2, D-LSA of node 1 is received by all nodes in the
network. The connection probability computation is based on
the idea of average availability, presented in PREP [12]. The
basic idea is for all nodes to keep track of the percentage of
time connected to every other node in the network.

C. Data Transmission

SETT values in F-LSA messages are used to compute the
intra-partition forwarding table. Thus node 1 chooses a 2-
hop path of node 2 - node 3 instead of the 1-hop direct path.
This path selection metric is sufficient for most wired/wireless
hybrid networks; however, for larger, ad-hoc networks a more
intelligent storage-aware approach is needed. We defer this
discussion until the next subsection. The DTN forwarding ta-
ble is computed by using a function of the average availability
(AA) in D-LSA message as weights. The approach taken by
PREP [12] is to define a weight as 1−AA+0.01, where the
small constant is added to favor paths with shorter hop counts
if the AAs are all close to 1. The next-hops are computed
using these weights as metrics for a shortest path algorithm.
Thus, in Figure 2, the intra-partition forwarding table at node
1 contains paths for nodes 2 and 3. The DTN forwarding table
of node 1 consists of paths for all nodes in the network.

If an intra-partition path exists to the destination, the node
checks the SETT and LETT values along the path to decide
if the current path quality is abnormally bad or not. The
short term path quality (STPath) and long term path quality
(LTPath) is the sum of SETT and LETT values along the
path, respectively. A decision to store a chunk is made locally
at every hop if STPath > k · LTPath, else, a forward
decision is made. Note that k is a threshold detecting how
bad the link must be, relative to its long term performance,
before a store decision is made; 1.1 is used as a baseline,
although we are investigating a dynamic approach to selecting
k. Mostly, the STPath and LTPath look similar to all hops in
the route. Thus, once nodes close to the source (or the source
itself) see the path as improved, others along the route will
not store. This proactive storing of data close to the source
helps alleviate congestion, minimize low-level transmissions,
and saves storage space in congested areas. This approach was
used in CNF routing [14]. If the destination is not found in

the intra-partition forwarding table, then the DTN forwarding
table is consulted. In this case, if the next hop is available, the
chunk is immediately forwarded to it.

D. Extension: Storage-Aware Path Selection

In large, ad-hoc networks with multiple paths with fast
changing qualities and storage availabilities, a more intelligent,
storage-aware path selection technique is needed. The goal
is to choose the path that minimizes the end-to-end delay,
accounting for time in storage, between two nodes within the
same partition. As a block traverses a path, each node along
the path will perform the following steps, (1) store the block
until ready to send, (2) attempt to gain access to the channel,
and (3) transmit the block to the next node along the path.

Assume nodes along an arbitrary path are labeled 1, 2, ..., k
where 1 is the source and k is the destination. Let BACKi

be the expected amount time a block will spend in storage at
node i due to back pressure from the hop-by-hop transport.
Let HOLDi be the expected amount time a block will spend
in storage at node i due to a routing decision to store Let Pi

be the probability that a routing decision to store (not due to
back pressure) is made by node i. Let CHANi be the expected
amount of time a block will wait while node i gains access to
the channel to send the block. Let Ti be the expected amount
of time a block will be in transit from node i to node i + 1.
The total end-to-end latency for a block over a path is:

delay1,2,...,k =

k∑
i=1

(Pi ·HOLDi +BACKi + CHANi + Ti)

Storage time due to back pressure at node i will directly
depend on the amount of data at node i with higher priority
than the block in question in addition to how long it takes for
space to open at node i+1. Making the simplifying assumption
that blocks are served on a first-come-first-serve basis:

BACKi =
Di

txi,i+1
+ TWSi+1(Di)

where Di is the amount of data being held at node i due to
back pressure, txi,i+1 is the transmission rate between node i
and node i+1, and TWSi+1(Di) is the time node i waits on
node i + 1 to clear out Di space. Note that the transmission
time, Ti, is Ti = blockSize

txi,i+1
.

We now describe how to instantiate this model with GSTAR,
which takes the approach of holding data close to the source
until the path quality is not abnormally bad. The following
simplifying assumptions to the model are for a particular path
p: blocks are held at the source, and after they are released
they will not be held (except for queuing due to back pressure)
at any intermediate node. Therefore, Pi = 0 for 2 ≤ i ≤ k.
TWSi = 0 for 1 ≤ i ≤ k, which is a result of holding the
block at the source until the path is of normal quality.

The current values of Di and txi,i+1 can be estimated by
node i and transmitted to all other nodes via F-LSAs. The
source node can estimate P1 in the following way. P1 = 0 if
the current SETT path metric is normal or low relative to the
LETT path metric. P1 = 1 if the current SETT path metric is



high relative to the LETT path metric. Furthermore, HOLD1

is the average amount of time for that path that the SETT is
relatively high. This can be estimated by proactively keeping
track of the following: given the SETT is high, on average
how long does it take to become normal or low.

With this information, a source node can compute the delay
metric for any given path as follows:

delay1,2,...,k = P1 ·HOLD1 +

k∑
i=1

(BACKi + Ti)

where Di and txi,i+1 are estimated from received LSA
message and TWSi = 0 ∀i.

IV. EVALUATION

The primary goal of our evaluation is to show that by
intelligently utilizing in-network storage, GSTAR outperforms
traditional and storage-augmented link-state protocols in both
wired and wireless network environments. We consider three
categories of simulation: (1) connected networks with fluctuat-
ing link quality, (2) node disconnection and network partition-
ing, and (3) parameter space evaluation. The NS3 simulator is
used for the evaluation.

A. Simulation Set-up

The first set of simulations demonstrates the effectiveness
of proactively storing when the path to the destination is
abnormally bad. GSTAR is compared against traditional link-
state with hop-by-hop transport in both pure wireless and
wired-wireless hybrid environments (see Figure 3 for the
topology). For the hybrid case, only the links connecting the
destination nodes (nodes 6 and 7) are wireless. To simulate
congestion in the network, we vary the link quality for one of
the flows by fluctuating the bit-rate of the link between node
6 and dest 1 between 54 Mbps and 6 Mbps periodically. Other
links are set to 54 Mbps. Simulation run time is 90 seconds.

Fig. 3. Network Topology

The second set of simulations demonstrates the effectiveness
of using storage to proactively push data towards the des-
tination, even if the destination is periodically disconnected
from the network. In this set, GSTAR is compared to a
version of GSTAR without DTN capability (which amount
to storage-augmented link-state). The same hybrid topology
is used, with nodes 6 and 7 periodically disconnecting every
[15 + rand(−5, 5)] seconds. We also explore a network
partition scenario, where two clusters of 4 nodes each (not
shown due to space constraints) are bridged by a mobile ferry
node. The bit rate for the links is set to 54 Mbps.

The last set of simulations explores the parameter space of
GSTAR, namely computing LETT. Three cases are considered.

First, LETT is an exponentially weighted moving average
(EWMA) with α, the weight of the current measurement, set
to 0.1. Second, LETT is an EWMA with α set to 0.5. Third,
LETT is a simple average of the past 10 measured ETTs. We
use the hybrid topology for this simulation.

Aggregate goodput, measured as the total number of chunks
received by all destinations, is the primary performance metric
throughout our evaluation. Each data point is the average of
10 runs, with 95% confidence intervals shown around it.
B. Performance Results

GSTAR is first compared to traditional link-state in both
wireless and hybrid environments. For the wireless network,
we have two 5-hop flows (Node 1 - Dest 1 and Node 2 - Dest
2) continuously transmitting chunks of 25 data packets. We
vary the bit-rate fluctuation time from 10 + rand(−2.5, 2.5)
seconds to 20 + rand(−5, 5) seconds in increments of 2.5
seconds. For the hybrid network, we consider two cases; one
with 4 flows and the other with 6 flows each with chunk size
of 10 data packets. In both the scenarios, the bit-rate fluctuates
from 54 Mbps to 6 Mbps every 15 + rand(−5, 5) seconds.
We vary the offered load by increasing the number of chunks
generated per second, starting at 25 chunks per second by each
source, followed by 50 to 200 in increments of 50.

For medium to high offered loads, GSTAR outperforms
traditional link-state, as shown in Figures 5(a,b,c). The cross-
over points in the two graphs signifies the load after which
the network is fully utilized. After this point, the two flows
starts competing with each other over network resources. With
traditional link state protocol, both the flows are given equal
weights. Thus, with 6 Mbps bit rate, flows for destination
1 would keep assess of the channel for a longer duration.
During this period, the other flows for destination 2 cannot
use the channel; even though it can send at a bit rate of 54
Mbps. Hence, network resources are not fully utilized with
a traditional link state protocol and congestion in one flow
affects other flows. GSTAR is able to efficiently detect this
variation in link quality using its parameter set of SETT and
LETT and proactively stores data. This enables it to alleviate
the effect of congestion on the other parts of the network.
Thus, flows for destination 2 are not affected by the bad links
for flows for destination 1 resulting in considerable gain in
aggregate goodput.

Next, GSTAR is compared to storage-augmented link-state
(or, GSTAR without DTN capability). GSTAR with DTN
proactively pushes data towards a disconnected destination,
allowing it to receive data as soon as it reconnects. Without
DTN, the disconnected node has to wait for its LSAs to
propagate through the network before it can receive data. As
shown in figure 5(a), there is evidence for a gain in aggregate
goodput across all network loads. For the network partition
case, where a single ferry node bridges two clusters, 3 flows
are randomly sourced and sent to random destinations. These
results, shown in figure 5(b), indicate that GSTAR is able to
discover the ferry node and deliver messages across partitions.

Finally, a parameter exploration of GSTAR is performed,
namely the computation of LETT. Two 5-hop flows are
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Fig. 4. GSTAR vs Traditional Link State with (a) wireless - 2 flows, (b) hybrid - 4 flows, (c) hybrid - 6 flows
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Fig. 5. (a) Node Disconnection, (b) Network Partition, (c) Computation of LETT

competing and the chunk size is set to 25 packets. As the
link quality variation is periodic, the goodput is maximized by
giving more weights on the past values of ETT, as shown in
figure 5(c). Using the average of past 10 ETTs as LETT gives
equal weights to only last 10 seconds of link qualities. This
gives better results than with the moving average weight of 0.5
here because the periodicity in link quality variation is around
15 seconds. Hence, with periodicity in link quality variation,
past statistics provide useful information on the general link
quality. Giving more weight to past values of SETTs results
in better goodput for this network.

Thus, GSTAR is able to detect different types of mobility
challenges, such as link quality fluctuation, node disconnec-
tion, network partitioning, and respond to them. By utilizing
storage for proactive holding or pushing, GSTAR achieves
significant goodput gains over traditional link-state protocols.

V. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we have proposed and evaluated a generalized
storage aware local routing protocol for the future Internet. We
have shown how GSTAR can achieve significant performance
gains by combining local link state and DTN style routing.
Although omitted from this paper due to space constraints, we
currently have a proof-of-concept implementation of GSTAR
running on both the GENI [4] and ORBIT [18] testbeds. In
the future, we plan to perform a comprehensive evaluation of
our GSTAR implementation. We also plan to make GSTAR
more robust to dynamic network conditions by varying its
parameters automatically. For example, the threshold for the
decision to store or forward should be dynamic. Finally, we
plan to enhance GSTAR by giving it replication capabilities.
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