
An Efficient and Expressive Access Control
Architecture for Content-based Networks

Joud Khoury, Samuel Nelson, Armando Caro, Vikas Kawadia, Dorene Ryder, and Tim Strayer
Advanced Networking, Raytheon BBN Technologies, Boston MA, USA
{jkhoury, snelson, acaro, vkawadia, dryder, tstrayer}@bbn.com

Abstract—Tactical content-based networks provide high mil-
itary utility in dynamic mobile networks with intermittent con-
nectivity and inherent disruption. Protecting the confidentiality of
information exchanges (content and metadata) in such networks
is particularly challenging since the publisher of information
does not know who the subscribers are, yet the publisher wants
fine-grained control over who has access to the information.
Ciphertext Policy Attribute Based Encryption (CP-ABE) is a
widely accepted cryptographic solution to this 1-many access
control problem. This paper presents an efficient and expressive
access control architecture for content-based networks based on
CP-ABE. A key contribution of the paper is the efficiency of
the proposed cryptographic solution which makes it practical
in a resource constrained tactical network. We demonstrate our
secure and efficient solution over a state-of-the-art tactical content
based network, and we quantify its performance overhead.

I. INTRODUCTION

A content-centric network provides efficient extensible
information exchange between nodes that produce content
(publishers) and those that consume it (subscribers) – the same
node can act as a publisher node and a subscriber node at the
same time. Publisher nodes describe the content of messages
using metadata. Similarly, subscriber nodes query or regis-
ter subscriptions in content and the content system delivers
content to matching subscribers (queries or subscriptions).
Content-based networks have several advantages, including (1)
decoupled automatic discovery of content, (2) efficient interest-
based delivery of information, and (3) simplified configuration
especially under dynamic conditions.

Realizing the content-based networking paradigm in tac-
tical mobile ad-hoc networks (MANETs) has high military
utility yet it poses a unique set of challenges. These include
rapidly and unpredictably varying links, constrained computing
and networking resources, mobility, and potential network
partitioning. CASCADE [1] is a state-of-the-art content-based
network architecture for MANETs designed to overcome these
challenges. By the intelligent replication and placement of
content, CASCADE is able to serve relevant content to nodes
in the MANET while operating in a resource-friendly fash-
ion. Furthermore, CASCADE provides a rich ontology-based
querying interface to quickly and intuitively discover content.

Protecting the confidentiality of published content and
metadata while retaining the benefits of content-based systems

This material is based upon work supported by DARPA and SPAWAR under
Contract No. N66001-12-C-4050. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of DARPA or SSC Pacific. Distribution
Statement “A” (Approved for Public Release, Distribution Unlimited).

is a particularly challenging task and is the main goal of
this paper. Consider the following access control use cases
for example: an explosive specialist detects and neutralizes
an IED and publishes the information so that any marine
could access it. A squad leader captures a high value target
(HVT), publishes the image and location of the HVT such
that a selected group can access it, and additionally publishes
a highly sensitive piece of metadata about the HVT under a
more restrictive policy (only squad leaders can access it). In
the scenarios above, publishers are oblivious of subscribers
yet still want fine-grained control over who can access their
published information. The publisher of information encrypts
using a policy defined over the access control attributes. Only
users with attributes (and respective secret keys) that satisfy
the policy are able to decrypt and access the information.
Confidentiality is cryptographically enforced.

We extend the CASCADE architecture [1] to support
access control with the following goals:

• Protect the confidentiality of content and metadata.

• Enable fine grained and expressive access policies to
maximize the utility of the system.

• Provide publishers the flexibility to assign different
access policies to different content items, and even
to different metadata fields associated with the same
content item.

• Minimize the performance overhead of access control
on the overall system throughput and latency which is
critical in a tactical setting.

To address these requirements, we exploit recent advances
in functional encryption [2]. Specifically, for fine-grained ac-
cess control, we resort to the secure and expressive Ciphertext-
policy Attribute-based Encryption (CP-ABE) scheme by Wa-
ters [3] which we enhance for increased efficiency. The main
contribution of this paper is a highly efficient CP-ABE con-
struction and implementation that is demonstrated and quanti-
fied over a real-world content-based MANET, CASCADE [1].
We extend the CP-ABE construction of Waters [3] to sup-
port asymmetric bilinear maps. We additionally leverage the
cryptographic micro-primitive optimizations made available by
the Multi-precision Integer and Rational Arithmetic C/C++
Library (MIRACL) [4]. Together these enhancements signifi-
cantly enhance the performance of our CP-ABE construction.
Our overall access control solution is integrated into the
Android-based CASCADE solution and is quantified over an
internal 30 node testbed.



Related Work. CP-ABE is a widely accepted approach for
securing information in loosely-coupled architectures. It has
been proposed for confidentiality and privacy in a broad set
of systems such as disruption tolerant networks (e.g, [5]),
content centric networks (e.g, [6]), publish-subscribe systems
(e.g, [7]), vehicular networks (e.g, [8]), etc. There is however
little work on optimizing, and applying CP-ABE in a real
world content-based MANET and quantifying its performance
over Android mobile phones. We note that compared to the
widely adopted construction in [9], [3] allows general repre-
sentations of access structures based on linear secret sharing, is
provable in the standard model [3], and can be made practically
more efficient as we shall discuss.

The rest of the paper is organized as follows: section II
briefly reviews the CP-ABE scheme. Section III presents
the access control architecture and how it integrates with
CASCADE’s information dissemination protocols. Section IV
evaluates the performance of the cryptographic primitives and
the overall impact of access control on the system performance.
Finally, we conclude and discuss future work in section V.

II. CP-ABE BACKGROUND

We review the expressive CP-ABE scheme of Waters [3].
A ciphertext-policy attribute based encryption scheme consists
of four algorithms: Setup, KeyGen, Encrypt, and Decrypt.

a) Setup(λ,U ): takes the security parameter λ and
attribute universe description U as input. We refer to the
attribute universe as the alphabet. The algorithm outputs the
public parameters PK and a master key MK.

b) KeyGen(MK, S): takes as input the master key MK
and a set of attributes S that describe the key. It outputs a
private key SK.

c) Encrypt(PK,M,A): takes as input the public param-
eters PK, a message M , and an access structure/policy A over
the universe of attributes. The algorithm will encrypt M and
produce a ciphertext CT such that only a user that possesses a
set of attributes that satisfies the access structure will be able
to decrypt the message. We assume the ciphertext implicitly
contains A, i.e., the access policy is always in the clear.

We also restrict our attention to monotone access structures.
Policies, or access structures, are expressive and may include
threshold gates including and (n-of-n), or (1-of-n) or threshold
k-of-n gates. The policy is monotone however so the not gate
is not supported [3]. For example, using KeyGen a subscriber
may be granted the following 2 attributes S ={MARINES,
SQUAD LEADER} to form his secret key SK. A publisher
encrypts a content item, using Encrypt, with the following
boolean policy over the attributes: SQUAD LEADER and
MARINES. The subscriber is able to decrypt the ciphertext
since the subscriber attribute set satisfies the policy. Note that
one may (inefficiently) support the not by explicitly including
an attribute (say X) and its negative (NOTX) in the alphabet.

d) Decrypt(PK,CT,SK): takes as input the public
parameters PK, a ciphertext CT, which contains an access
policy A, and a private key SK, which is a private key for a
set S of attributes. If the set S of attributes satisfies the access
structure A then the algorithm will decrypt the ciphertext and
return a message M .

A key security property of CP-ABE is that it is collusion-
resistant. This means that two nodes are not able to combine
their attributes to decrypt a ciphertext unless at least one of
them is able to decrypt on its own.

In terms of performance, the construction in [3] is for CP-
ABE using symmetric elliptic curves. Our implementation,
detailed in the Appendix, extends [3] to use asymmetric
elliptic curves. Asymmetric curves are more practically and
efficiently realizable for higher security levels [10]. Our CP-
ABE implementation additionally uses several cryptographic
primitive optimizations such as pre-computation, and multi-
pairings which we discuss in more details along with the
resulting performance improvements in section IV.

III. CASCADE ACCESS CONTROL ARCHITECTURE

CASCADE is a content-based networking solution for
MANET environments, led by Raytheon BBN Technologies
as part of the DARPA CBMEN program [1]. At a high-
level, CASCADE dynamically detects stable regions of the
network, and pools the resources within those regions together
to efficiently store, distribute, and serve content. These regions,
referred to as communities, may be thought of as “mobile
storage clouds” that automatically and efficiently organize all
relevant content that they encounter using a Distributed Hash
Table (DHT) per community. CASCADE prioritizes resource
utilization by considering content metadata and community
context (i.e., mission, role, location) to influence how content
is moved and stored within and among communities. Appli-
cations search for content using rich semantic queries that are
resolved to a set of unique Content Identifiers (CID) by a local
Content Naming Subsystem (CNS).1

We discuss the access control architecture as it relates to
CASCADE’s main operations: publish, query, and sync.

A. Publish and Retag

Figure 1 shows a sketch of the publish operation steps.

Node	  
(Publisher)	  

Node	  
(responsible	  for	  CID)	  

Node	   Node	  

For	  each	  plaintext	  PT,	  publisher	  
node	  generates	  
•  CTP	  =	  {pol;	  Epol(P)}	  
•  CID=hash(CTP),	  	  
•  CTm	  =	  {pol;	  CID;	  Epol(mdata)}	  

Send	  CTm	  to	  all	  nodes	  in	  
community	  

Node	  decrypts	  {CID,	  mdata}=DaFributes(CTm),	  and	  adds	  {CID,	  
mdata}	  to	  local	  search	  index	  

a 

b2 

Content	  
P	  

Searchable	  mdata	  

Policy	  pol	  
PT = {P, mdata, 
pol} 
mdata = Metadata 

disseminate 

Send	  {CID,	  CTP}	  to	  
node(s)	  responsible	  for	  

storing	  CID	  
b1 

Store	  {CID,	  CTp}	  

c1 

c2 

Fig. 1: CASCADE Publish Operation

a The publisher node wishes to publish a content P
along with a set of searchable metadata mdata. The

1CNS was developed by a team led by Drexel Univeristy.



publisher wishes to control who can access the plain-
text PT = {P,mdata} using an access policy pol
defined over the universe of access control attributes.
The publisher creates two ciphertexts
• CTP is the content ciphertext policy-encrypted

using policy pol. The publisher hashes CTP

to create the content identifier CID. Note the
ciphertext includes the policy in the clear as
explained earlier in section II.

• CTm is the metadata ciphertext policy-
encrypted using policy pol. CID is included in
the metadata ciphertext to reference the content
that the metadata is associated with.

b1 Publisher node sends the content ciphertext CTP to the
node(s) responsible for storing the CID (depending on
where CID falls in the DHT space).

b2 Publisher node disseminates the metadata ciphertext
CTm to all nodes in the community.

c1 Node(s) responsible for storing the content item re-
ceives and indexes the content ciphertext using CID.

c2 All nodes that receive metadata ciphertext CTm, at-
tempt to decrypt it for indexing purposes. Decryption
succeeds only if a node possess the attributes (and cor-
responding private key) that satisfies encryption policy
pol. Upon successful decryption, the node passes the
metadata to the CNS so that the content is searchable.
The node additionally stores CTm used in the sync
operation (described shortly).

Retagging is the process of adding metadata to a content item
by a node possibly different than the original content publisher.
For example, a node fetches a content item, decrypts the
plaintext which was encrypted under policy pol, and decides
to further annotate the item with a new set of metadata fields
and publish those under a new policy. This process is similar
to publish except the publication comprises solely metadata.

B. Query

Node	  
(responsible	  for	  

CID)	  

Node	  

Node	  retrieves	  CTP	  and	  
computes	  

P=Da<ributes(CTP)	  

Node	  issues	  local	  query	  
and	  gets	  back	  matching	  
CIDs	  

a 

c 
Fetch	  CID	  from	  

responsible	  node(s)	  
b 

Fig. 2: CASCADE Query Operation

A sketch of the query operation steps is shown in Figure 2.

a A node issues a local query to the CNS and gets back
a set of content identifiers CIDs. For each such CID,
steps b, c below are repeated.

b Node issues a fetch request for CID from the node(s)
responsible for storing the content.

c Node retrieves the content ciphertext CTP and at-
tempts to decrypt it using its private key. If the
attributes satisfy the policy, the node successfully
decrypts and consumes the content.

It is important to note that queries are satisfied locally by the
CNS. Only metadata items that the local node has access to are
indexed in the local CNS registry and used to satisfy queries.

C. Content Synchronization (sync)

When two communities get within proximity of each
other, CASCADE provides a mechanism to synchronize their
content. Syncing is the process of exchanging content and
metadata items between nodes belonging to different commu-
nities so that items are available to both communities. There
are three desired goals when two nodes sync, including

• Correctness: each of the nodes gets the content (and
associated metadata) of the items that it is responsible
for storing (e.g., those items that fall within the node’s
part of the DHT space)

• Efficiency: nodes should not exchange items they
already possess and an item should not traverse the
community more than once

• Confidentiality: content and metadata should only be
accessible to nodes that are allowed to view it. Note
that a node might store (and sync) content and meta-
data items it is responsible for even though it might
not be able to access the items.

store	  {CID,	  CTP,	  
CTm,	  ..}	  	  

Node	  2	  
COMMUNITY	  2	  

Node	  2	  finds	  the	  set	  of	  resident	  CIDs	  
not	  already	  with	  node	  1	  falling	  within	  

1’s	  range	  ,	  {CID}2\{CID}	  1	  

Node	  1	  sends	  list	  of	  resident	  CIDs	  within	  
its	  range	  of	  the	  DHT	  ring,	  {CID}1,	  along	  
with	  its	  DHT	  range	  

a 
b 

For	  each	  content	  item	  CID	  in	  {CID}2\{CID}	  1	  
send	  {CID,	  CTP,	  CTm,	  ..}	  i.e.	  content	  ciphertext	  
along	  with	  all	  its	  encrypted	  mdata	  ciphertexts	  

d 
c 

COMMUNITY	  1	  

Send	  {CTm,	  ..}	  to	  all	  
nodes	  in	  community	  

e 

Node	  1	  
COMMUNITY	  1	  

Fig. 3: CASCADE Sync Operation

Figure 3 shows two nodes, node 1 and node 2, who get
within range and start the sync operation. Here, we only show
how node 2 syncs its items with node 1 and it should be noted
that the same process is performed in the opposite direction as
well, and between all pairs of nodes in the two communities.

a Node 1 sends a list of its resident CIDs, call it {CID}1,
to node 2 along with a compact representation of the
content it is responsible for.

b Node 2 computes the set of its resident CIDs that fall
within node 1’s subspace and are not yet at node 1,
call this set {CID}2\{CID}1.

c Node 2 sends the previously stored ciphertexts of all
items in the set {CID}2\{CID}1 including each item’s
content and all its metadata ciphertexts to node 1.



d Node 1 stores the item including encrypted content
and metadata

e Node 1 then simply publishes the encrypted metadata
just the same way a retag operation works (see sec-
tion III-A).

During this sync, a community learns nothing about what the
other community is interested in.

IV. PERFORMANCE EVALUATION

We first measure the performance of the CP-ABE crypto-
graphic algorithms which we then use to directly deduce the
impact of access control on the overall system.

A. CP-ABE Performance: Latency and Ciphertext Expansion

We first analyze the exact cost of the CP-ABE’s crypto-
graphic algorithms in terms of the number of low-level cryp-
tographic primitives required for encryption and decryption
(runtime performance). We discuss the performance optimiza-
tions used by our implementation mainly pre-computations,
and multi-pairings and we show the resulting performance
improvements. These performance improvements make our
system more practical in a resource-constrained MANET.

1) Cryptographic Primitive Optimizations: In section II
and the Appendix we presented our CP-ABE variant which
uses prime order groups and an asymmetric bilinear map
both of which result in significant speedups of the con-
struction. To further enhance the performance of the cryp-
tographic algorithms, we leverage the Multi-precision Integer
and Rational Arithmetic C/C++ Library (MIRACL) [4] and
the optimizations it provides (discussed next). The two key
primitives for encryption and decryption are “exponentiations”
and “pairings”. MIRACL provides these optimized primitives
which significantly speedup CP-ABE [4]. We discuss how the
optimizations were applied in the Appendix.

Exponentiation with pre-computation: An exponenti-
ation computes gx(mod n) where g is an element either
of group G1 or G2. If g and n are known in advance,
we can speed up the exponentiation by precomputing and
storing a table of values gi(mod n) for different exponents
i and replacing the exponentiation instead with lookups and
multiplication [11]. This is directly applicable to CP-ABE
encryption (and decryption) for example, since known fixed
group elements in the public parameters (and the key) are
raised to some exponent [3].

Pairing with pre-computation: A pairing computes the
bilinear map e(g1, g2) where g1 ∈ G1, g2 ∈ G2 and
e(g1, g2) ∈ GT [3], [10]. If g2 is fixed and is reused in
multiple pairings, then it is possible to speed up the pairing
using pre-computation of various parameters used in the Miller
loop [12]. For example, CP-ABE Decrypt computes e(Ci, L)
and e(Di,Kx) where both L and Kx are fixed (for a given
secret key) and Ci and Di are different per encryption [3].
Pre-computation speeds up these pairings.

Multi-pairing (with pre-computation): A multi-pairing
optimizes the computation of products of pairings [13].
These optimizations may be combined with pairing pre-
computation if elements in G2 are fixed. For example,

as described in the Appendix, CP-ABE Decrypt computes∏
i∈I e(Ci, L) e(Di,Kρ(i)) where again the L and Kx are

fixed for a given secret key. These computations can be
significantly sped up using multi-pairing with pre-computation.

The core cryptographic primitives we shall utilize for im-
plementing the CP-ABE algorithm are listed in Table I.
Characterizing the performance of these primitives will di-

TABLE I: Performance of cryptographic primitives

Operation Average time (ms)
Pairing e(g1, g2) 27.4

One more multi-pairing e(g1, g2)e(g′1, g
′
2) 11.2

Pairing pre-computation 4.7
Pairing with pre-computation 19.8

One more multi-pairing with pre-computation (ms) 6.9
Exponentiation (Exp) in G1, gs1 1.13

Exp pre-computation in G1 18
Exp with pre-computation in G1 0.36

Exp in G2, gs2 2.53
Exp pre-computation in G2 31.1

Exp with pre-computation in G2 1.1
Hash to AES key in GT 1.36

Power in GT , e(g1, g2)s 9
Power pre-computation in GT 99.3

Power with pre-computation GT 4.06

rectly characterize our system performance overhead. More
specifically, the exact cost of a CP-ABE operation is a direct
function of these primitives. All performance results hereafter
assume a security level equivalent to AES 128 bits realized
with the Barreto-Naehrig (BN) curve [14] and are measured
on a single physical core on the Galaxy S4 Android phones
running Android CynanogenMod 10.2 (ARM7 architecture,
Qualcomm Snapdragon 600 chipset, 1.9 GHz quad-core CPU).
From Table I, we see significant improvements as a result
of the different optimizations. For example, using a multi-
pairing with pre-computation on two elements speeds up a
single pairing by around 75% (decryption time is sped up pro-
portionally). Pre-computation also speeds up exponentiation in
G1 by around 70% (encryption time is sped up proportionally).
Pre-computation speedups come at the cost of more caching
as explained earlier. It is important to note that for all the
numerical values in Table I, we additionally fixed the word
size to 32 bits.

2) CP-ABE Performance: Based on the performance of
the cryptographic primitives of Table I, Table II shows the
exact cost analysis of the CP-ABE algorithm operations [3]
described in section II and their performance speedups. For
both Encrypt and Decrypt runtime operations, we show the
“optimized”, “actual”, and “un-optimized” performance. The
latter is the performance when pre-computation and multi-
pairing optimizations are not applied. The optimized row indi-
cates the target (expected) performance when the optimizations
are applied based on Table II. The actual is the measured
performance on the phones. Note that the gap between target
and actual is mainly due to our Java implementation overhead
which could be further optimized. We can clearly see up to
3x speedup relative to target and up to 2x speedups relative
to actual in each of the encryption and decryption times
as a result of the optimizations. This improvement directly
translates to reducing the system latency overhead of access
control proportionally as discussed next in section IV-B.



TABLE II: CPABE performance as function of number of
attributes n in the access policy, and number of matching
attributes L in the secret key

Operation Cost L=n=1 L=n=5 L=n=10
Encrypt: Exp w/ precomp G1 n 0.4 2 4

Encrypt: Exp w/ precomp in G2 1 + n 2.26 6.8 12.47
Encrypt: Exp w/ precomp in GT 1 4.5 4.5 4.5

Encrypt: hash-to-aes 1 1.46 1.46 1.46
Encrypt Total Time optimized (ms) 8.67 14.8 22.47

Encrypt Total Time actual (ms) 9.77 26.73 38.8
Encrypt Total Time un-optimized (ms) 18 32.73 51.23

Speedup Factor (actual) 1.84x 1.22x 1.32x
Speedup Factor (target) 2.1x 2.2x 2.3x

Decrypt: Exp w/ precomp in G1 L 0.4 2 4
Decrypt: Exp w/ precomp in G2 L 1.13 5.67 11.3

Decrypt: Multi-pairing w/ precomp 2 + L 36.3 65.5 102
Decrypt: hash-to-aes 1 1.46 1.46 1.46

Decrypt Total Time optimized (ms) 39.3 74.6 118.8
Decrypt Total Time actual (ms) 51.7 121.23 175.77

Decrypt Total Time un-optimized (ms) 82.87 201.26 349.27
Speedup Factor (actual) 1.6x 1.6x 2x
Speedup Factor (target) 2.1x 2.7x 3x

TABLE III: CPABE ciphertext expansion as a function of
number of attributes in the access policy n

Group Elements Cost n=1 n=5 n=10
number elements in G1 n 64 320 640
number elements in G2 1 + n 256 768 1408

Total ciphertext expansion (bytes) 320 1088 2048

Ciphertext Expansion: Table III shows the CP-ABE ci-
phertext expansion/overhead required as a function of number
of attributes n in the access policy. This is measured in terms of
the number of group elements that comprise the ciphertext [3].
For the BN curve [14], an element in G1 is 64 bytes whereas
an element in G2 is 128 bytes. Note that each group element
comprises two coordinates (x, y) on the elliptic curve, where
the size of each is equal to the size of the underlying field
(256 bits for [14]). Accordingly, it is possible to reduce the
ciphertext size (and accordingly the over-the-air bits) by half
by representing each group element using only its x coordinate.
This comes at a computation cost since the y coordinates will
have to be computed on the fly during decryption.

B. System Latency

We measure the latency overhead of access control in
CASCADE by measuring the reception latency when access
control is enabled and when it’s disabled and comparing the
results. The reception latency is the end-to-end latency from
when an item is published until it is received by any of
the expected receivers. This was measured over our internal
testbed comprising 30 static Android S4 phones connected
to an EMANE network emulator and running the CASCADE
stack along with an instrumentation application over emulated
802.11 WiFi links. The application published 875 content
items over CASCADE of various sizes and expected 22200
total receptions (an item is received by multiple subscribers).
Each such reception logs a latency data point. Figure 4 shows
the latency cumulative distribution with and without access
control. The 50th percentile latency with access control on is
0.94 sec compared to 0.7 sec when off i.e., access control adds
around 240 ms of latency overhead. This cost grows linearly
with the size n of the policy and the number L of satisfying

5 10 15 20 25 30
Latency (s)

0

5000

10000

15000

20000

25000

N
u
m

b
e
r 

o
f 

R
e
ce

p
ti

o
n
s 

w
it

h
 L

a
te

n
cy

 <
 X

Latency CDF

Access Control off
Access Control On (L=n=1)

Fig. 4: Latency CDF comparison

attributes in the secret key.
As described earlier in section III-A, the publish operation

requires two CP-ABE encryptions at the publisher node (one
for metadata and one for content). These encryptions may
run in parallel. In addition, each subscriber node requires a
decryption for the metadata ciphertext and an additional de-
cryption on the fetched content ciphertext (section III-B). This
requires two encryptions and two decryptions to run serially
increasing the end-to-end latency of the system accordingly.
For the L = n = 1 attribute case shown in Figure 4, the
expected latency overhead due to CP-ABE alone is around
123 ms per Table II (actual). The remaining 120 ms may be
attributed to serialization delay due to ciphertext expansion and
to the symmetric encryption/decryption and File I/O. Finally,
note that our implementation is multi-threaded which means
that CASCADE leverages additional cores to linearly increase
the system throughput in the event that it is CPU-bound.

V. CONCLUSION AND FUTURE WORK

This paper presents an efficient and expressive access
control architecture for protecting the confidentiality of in-
formation exchanges (content and metadata) in content-based
networks. We rely on Ciphertext Policy Attribute Based En-
cryption (CP-ABE) as the key enabling technology. Our CP-
ABE implementation is made highly efficient by leveraging
cryptographic and system optimizations. For 5 attributes, a
CP-ABE encryption operation takes around 27 ms while a
decryption takes around 120 ms. This is 2-3x improvement
over an un-optimized counterpart.
In terms of future work, we plan to add key revocation and
subscription privacy support. Bethencourt et al. [9] show how
time-based key revocation would be possible using the current
construction, and more recently Hur et al. [5] presented a more
efficient construction. Protecting the privacy of subscriber
interests requires no leakage about the subscriber’s query to
third parties. CASCADE protects privacy of interests to the
most part simply because user queries are satisfied locally.
However, when a user fetches the content from the responsible
node(s) (Figure 2), the latter might learn what a specific
user is interested in by examining the user’s fetch requests
over time. Recent system and cryptographic solutions for
protecting subscriber privacy might be relevant here, see [7]



and references therein.

APPENDIX

An asymmetric CP-ABE scheme is presented extending the
symmetric Setup, Encrypt, KeyGen and Decrypt algorithms
of [3]. The extension is straightforward and with minor (but
tedious) notational changes, the security proof of [3] applies
to this asymmetric version since the hardness assumption
used (Decisional Parallel Bilinear Diffie-Hellman Exponent
Assumption) applies to both formulations. The security proofs
are beyond the scope of this paper.

Setup: (PK,MSK)← Setup(U)
The setup algorithm takes as input the number of attributes
in the system U . It then chooses two groups G1 and G2 of
prime order p, generators g1 ∈ G1, g2 ∈ G2 and U random
group elements h1, . . . , hU ∈ G2 that are associated with the
U attributes in the system. In addition, it chooses random
exponents α, a ∈ Zp. The public key is published as

PK = g1, g2, e(g1, g2)
α, ga2 , h1, . . . , hU .

The authority sets MSK = (ga1 , g
α
1 ) as the master secret key.

Encrypt: Ciphertext← Encrypt(PK, (M,ρ),M)
The algorithm takes as input the public parameters PK, the
AES key used to encrypt the payload M and an LSSS access
structure (M,ρ) where M is an n×` matrix and the function ρ
associates each of the n rows of M to one of the U attributes.

The algorithm first chooses a random vector ~v =
(s, y2, ..., yn) ∈ Znp . These values will be used to share the
encryption exponent s. For i = 1 to `, it calculates λi = ~v ·Mi,
where Mi is the vector corresponding to the ith row of M . In
addition, the algorithm chooses random r1, . . . , r` ∈ Zp. The
ciphertext is published as CT =

C =Me(g1, g2)
αs, C ′ = gs2,

(C1 = gaλ1
2 h−r1ρ(1), D1 = gr11 ), . . . , (C` = gaλ`

2 h−r`ρ(`), D` = gr`1 )

along with a description of (M,ρ). First, the size (number of
rows) of the LSSS matrix is significantly reduced using the
optimizations in [15]. In addition, all exponentiations use pre-
computations.

KeyGen: SK ← KeyGen(MSK, S)
The key generation algorithm takes as input the master secret
key and a set S of U attributes. The algorithm first chooses a
random t ∈ Zp. It creates the private key as

K = gα1 g
at
1 L = gt1, Kj = htj , ∀j ∈ S

Decrypt: M ← Decrypt(CT,SK)
The decryption algorithm takes as input a ciphertext CT for
access structure (M,ρ) and a private key for a set of attributes
S. Suppose that S satisfies the access structure and let I ⊂
{1, 2, . . . , `} be defined as I = {i : ρ(i) ∈ S}. Then, let
{ωi ∈ Zp}i∈I be a set of constants such that if {λi} are valid
shares of any secret s according to M , then

∑
i∈I ωiλi = s.

(Note there could potentially be different ways of choosing
the ωi values to satisfy this.) The decryption algorithm first
computes

e(C ′,K)/
(∏

i∈I(e(Ci, L)e(Di,Kρ(i)))
ωi
)
=

e(g1, g2)
αse(g1, g2)

ast/
(∏

i∈I e(g1, g2)
taλiωi

)
= e(g1, g2)

αs

The decryption algorithm can then divide out this value from
C and obtain the AES keyM. Following the approach in [16],
the decryption algorithm can be reorganized to take advantage
of the speed-ups due to precomputation and multipairing as
follows. Let A ∈ S be a minimal set of attributes that satisfy
the access policy. First reduce the matrix M by removing
rows associated with attributes that are not in A and remove
redundant all-zero columns from the matrix. Next calculate the
vector ω, which is the shares that reconstruct the secret (this is
the first row of M−1.) Set all Cj ← ωjCj and Dj ← ωjDj .
Where the same attribute is associated with more than one
row of the M matrix, combine the associated Cj and Dj

values by simply adding them. (This exploits bilinearity as
e(Ki, Dj).e(Ki, Dk) = e(Ki, Dj + Dk), which allows us to
rewrite Di = Dj +Dk). Finally recover the message as

M = CT e(Cd,−K)e(
∑
i∈A

Ci, L)
∏
i∈A

e(Ki, Di)

REFERENCES

[1] T. Strayer, V. Kawadia, A. Caro, S. Nelson, D. Ryder, C. Clark,
K. Sadeghi, B. Tedesco, and O. DeRosa, “Cascade: Content access sys-
tem for the combat-agile distributed environment,” in IEEE MILCOM,
2013, pp. 1518–1523.

[2] D. Boneh, A. Sahai, and B. Waters, “Functional encryption: a new
vision for public-key cryptography,” Commun. ACM, vol. 55, no. 11,
pp. 56–64, Nov. 2012.

[3] B. Waters, “Ciphertext-policy attribute-based encryption: An expressive,
effcient, and provably secure realization,” Cryptology ePrint Archive,
Report 2008/290, 2008, http://eprint.iacr.org/.

[4] Certivox, “MIRACL cryptographic SDK,”
http://www.certivox.com/miracl/.

[5] J. Hur and K. Kang, “Secure data retrieval for decentralized disruption-
tolerant military networks,” IEEE/ACM Trans. Netw., vol. 22, no. 1, pp.
16–26, Feb. 2014.

[6] M. Ion, J. Zhang, and E. M. Schooler, “Toward content-centric privacy
in icn: Attribute-based encryption and routing,” in Proceedings of ACM
ICN ’13. New York, NY, USA: ACM, 2013, pp. 39–40.

[7] J. Khoury, G. Lauer, P. Pal, B. Thapa, and J. Loyall, “Efficient private
publish-subscribe systems,” In Proc. of ISORC’14, 2014.

[8] S. Ruj, A. Nayak, and I. Stojmenovic, “Improved access control
mechanism in vehicular ad hoc networks,” in Ad-hoc, Mobile, and
Wireless Networks, ser. Lecture Notes in Computer Science, H. Frey,
X. Li, and S. Ruehrup, Eds. Springer Berlin Heidelberg, 2011, vol.
6811, pp. 191–205.

[9] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-
based encryption,” in Proc. of the 2007 IEEE Symposium on Security
and Privacy, 2007, pp. 321–334.

[10] S. Galbraith, K. Paterson, and N. Smart, “Pairings for cryptographers,”
Cryptology ePrint Archive, Report 2006/165, 2006, http:eprint.iacr.org/.

[11] A. J. Menezes, S. A. Vanstone, and P. C. V. Oorschot, Handbook of
Applied Cryptography, 1st ed. Boca Raton, FL, USA: CRC Press,
Inc., 1996.

[12] C. Costello and D. Stebila, “Fixed argument pairings,” in Proc. of
LATINCRYPT. Springer-Verlag, 2010, pp. 92–108.

[13] R. Granger and N. Smart, “On computing products of pairings.”
Cryptology ePrint Archive, Report 2006/172, 2006, http:eprint.iacr.org/.

[14] P. S. L. M. Barreto and M. Naehrig, “Pairing-friendly elliptic curves
of prime order,” in Selected Areas in Cryptography – SAC 2005, ser.
Lecture Notes in Computer Science, B. Preneel and S. Tavares, Eds.,
vol. 3897. Springer-Verlag Berlin/Heidelberg, 2006, pp. 319–331.

[15] Z. Liu and Z. Cao, “On efficiently transferring the linear secret-sharing
scheme matrix in ciphertext-policy attribute-based encryption.” Cryp-
tology ePrint Archive, Report 2010/374, 2010, http://eprint.iacr.org/.

[16] J. Akinyele, C. Lehmann, M. Green, M. Pagano, Z. Peterson, and
A. Rubin, “Self-protecting electronic medical records using attribute-
based encryption.” Cryptology ePrint Archive, Report 2010/565, 2010.

6


