
ASAP: Preventing Starvation in Backpressure
Forwarding

Laura Poplawski Ma, Samuel Nelson, Gregory Lauer, Stephen Zabele
Raytheon BBN Technologies, Cambridge MA, USA

{laura.ma, samuel.nelson, greg.lauer, steve.zabele}@raytheon.com

Abstract—Backpressure forwarding maximizes throughput in
dynamic networks. It does not, however, provide any latency
guarantees and can result in indefinitely long queuing delays.
ASAP (Anti-Starvation with Artificial Packets) solves this star-
vation problem by: (1) dynamically detecting starvation based
on outbound capacity estimates, (2) using virtual packets to
convert queuing delay into queue-based gradient increases, and
(3) non-linearly add virtual packets after starvation is detected
to rapidly respond. ASAP was implemented into a backpressure
forwarding system called IRON. Experimental results show that
ASAP effectively detects and rapidly addresses starvation when it
is occurring, and does no harm when starvation is not occurring.

I. INTRODUCTION

Backpressure forwarding is an approach to dynamic net-
works that maximizes network throughput [1]. Founded in
queuing theory and stochastic network optimization, back-
pressure forwarding makes local decisions based on queue
depths to decide when and where to send packets. Each node
maintains a separate queue for each destination, and the queue
depths are shared only with immediate neighbors. The node
computes the difference (known as the gradient) between each
local queue depth and the depth of the corresponding queue
at each neighbor. Whenever a link is available to transmit
a packet, the node chooses a packet from the destination-
based queue with the largest gradient. The benefits of this
approach include maximizing throughput, vastly simplifying
routing decisions, and decreasing global or wide-spread control
traffic imposed by traditional routing algorithms.

While backpressure maximizes throughput, it does not
attempt to minimize latency. In fact, it is often the case that
latency suffers due to slow gradient build up and long indirect
paths. This is most evident when there are competing flows
of different rates traveling through common nodes. High rate
flows can more rapidly increase and maintain the gradient
between neighboring nodes, causing packets from low rate
flows to be starved or served much more slowly. While gradient
pressure from long-lasting flows will eventually build, latency
can be severely impacted and the final packets of flows may be
starved indefinitely [2]. This is particularly problematic with
TCP flows, since acknowledgments must be received before
additional packets are sent, so long queues cannot accumulate.

This material is based upon work supported by DARPA under Contract No.
HR0011-15-C-0097. Any opinions, findings and conclusions or recommenda-
tions expressed in this material are those of the author(s) and do not necessarily
reflect the views of DARPA. Distribution Statement “A” (Approved for Public
Release, Distribution Unlimited). Approved for Public Release, cleared by
DARPA on May 2, 2018, DISTAR Case No. 29390.

Addressing starvation in backpressure forwarding is chal-
lenging because the optimization problem being solved is
maximizing network throughput, and starvation of individual
flows is not considered if it does not affect network throughput.
Since starvation is manifested as increased queuing delay,
including queuing delay into the backpressure algorithm is
a natural approach, and has been considered [3], [2], [4].
Always incorporating delay into the gradient works well
when the network can support all admitted traffic. However,
the use of a delay term has not been previously addressed
when backpressure is paired with admission control based on
queue depths (i.e., when the offered traffic load cannot all be
supported). We have shown that simply incorporating the delay
into the gradient computation can unfairly bias the rate of flows
when using admission control based on queue depths, such
as the log-based admission control introduced in [5]. (This is
illustrated in detail in Section II).

We address the starvation problem in the presence of
admission control with the following insight: gradient pres-
sure, based only on queue depth, should rapidly increase
if a starvation condition is detected. To this end, we have
developed the Anti-Starvation with Artificial Packets (ASAP)
algorithm, which detects starvation and responds by adding
virtual packets to the queue in a non-linear fashion based
on queuing delay. Virtual packets are included in the queue
depths like any other packet, but they are dequeued only
when no real packets exist for a destination, and they are
never transmitted. We have implemented ASAP into the IRON
system [6], developed as part of a DARPA-funded effort, which
utilizes backpressure forwarding with admission control to
provide a highly survivable and robust network. There are
three novel aspects of ASAP that allow it to effectively address
starvation without disrupting queue-based admission control:

1) A capacity-based dynamic starvation detection mech-
anism prevents ASAP from inflating the gradient
when queue delay is a response to network conditions
rather than to backpressure-induced starvation

2) The addition of virtual packets during a detected
starvation condition, instead of directly adding a
delay term to the gradient computation, allows the
gradient to gracefully increase to counter starvation,
without requiring additional control traffic between
nodes, and decrease when the starvation condition
passes, preserving the inflated gradient even when
the queue does not instantaneously contain packets
for the starved destination

3) A non-linear function maps long queue delays during



a starvation condition to a quantity of virtual packets
added to the queue, allowing for rapid response

The remainder of this paper is as follows. Section II
discusses the starvation problem in depth, including existing
work. Section III presents the ASAP algorithm, and discusses
in detail the three major components. Section IV presents
results from the IRON system running ASAP on real hardware,
showing that it effectively detects and responds to starvation
when starvation is truly occurring, and does no harm when
starvation is not occurring. Finally, Section V concludes and
presents future directions.

II. STARVATION IN BACKPRESSURE ROUTING

Due to the focus on network throughput, backpressure
forwarding algorithms based only on queue depths can result in
large latencies and starvation of flows, including the last packet
problem [2]. There have been recent advances in starvation
avoidance, many of which incorporate queue delay directly
into the gradient computation, either in place of queue depths
or in conjunction with queue depths.

[2] replaces queue depth with a function of head-of-line
queue delay, but only operates with predetermined routes. [3]
uses a delay-based Lyapunov function for scheduling, but only
applies to single hop networks. [4] uses a combination of delay
and queue depth for dynamic multi-hop backpressure forward-
ing and proves that starvation (including last-packet starvation)
cannot occur. However, their result assumes the admitted traffic
is within the feasible region for the network, and thus does
not take admission control into account. Furthermore, without
any discussion of admission control, it cannot address utility
maximization. We discuss an example in Section II-A where
the algorithm from [4] results in poor network utility under
the admission control algorithm from [5].

In this work, we address anti-starvation in the presence
of queue-based admission control by including starvation
detection into our anti-starvation algorithm, and including a
delay term that is based on the degree of starvation. The
backpressure gradients for scheduling/forwarding and queue-
based admission control will simply use the queue depth unless
a starvation condition is present for the queue in question.
This allows our algorithm to interact correctly with existing
admission control algorithms. Furthermore, we significantly
simplify the implementation by accounting for head-of-line
queuing delay via the addition of virtual packets to the queues,
rather than attempting to exchange delay measurements (along
with all values necessary to detect starvation) with neighbors.
This also allows different nodes to independently determine
whether or not a destination is being starved and the relative
importance of anti-starvation vs other flow utility functions,
and it automatically preserves the starvation-avoidance state
(with a natural decay mechanism) after the queue is empty, and
thus works well for intermittent flows as well as last packets.

A. Case for Non-linear Delay Term

Simply adding a term linearly proportional to the delay
into the gradient computation can result in unfair admission
between flows when the latency of those flows are rightfully
different. To illustrate this, consider the “Y-shaped” topology
in Figure 1. In this scenario, there are three high-rate flows

Fig. 1: Y-shaped topology with three flows, resulting in asym-
metric latency due to asymmetric queue delay.

all destined to the right-most node. During the first half of the
scenario, flows F1 and F2 start. Half-way through, F3 starts.

We can compute the expected latency of the flows as
follows. Let L(f) be the latency for a flow f , and Q be the set
of all queues on the path f traverses. Let d(q) be the queue
depth and r(q) be the drain rate of a queue q ∈ Q. Let l(q, f)
be the link transmission delay of a packet in f that has just
left queue q. In this scenario, each flow traverses three queues
(the end queue is not considered) and three links. The latency
of a flow f can be computed as:

L(f) =
∑
q∈Q

(
d(q)

r(q)
+ l(q, f)

)
Backpressure forwarding will ensure all queues have the same
depth, which in this experiment is 20KB (corresponding to
roughly 20 packets) in a fully loaded, stabilized network. 1

Prior to F3 starting, both F1 and F2 have the same expected
end-to-end latency. Experimental results from running this
experiment in IRON without ASAP show that each flow is
able to achieve a throughput of 4.2Mbps after accounting for
overhead. Hence the drain rate of the first two queues on the
path is 4.2Mbps, and the drain rate of the bottleneck queue
is 8.4Mbps. The expected end-to-end latency of these flows is
therefore 125ms when all links have 10ms propagation delay.

After F3 starts, experimental results show that all three
flows have the same throughput of around 2.8Mbps, which is
expected since the flows have the same priority. Hence the first
two queues servicing F1 have a drain rate of 2.8Mbps and the
first two queues servicing the other flows have a drain rate of
5.6Mbps. The bottleneck flow has a drain rate of 8.4Mbps.
Plugging these values into the equation, we expect the end-to-
end latency of F1 to be 160ms and the end-to-end latency of
both F2 and F3 to be 100ms. These expected results match
the experimental results, shown in Figure 2.

Fig. 2: Experimental results showing latency asymmetry, which
would lead to unfair prioritization if using a linear delay term.

1We reduce the queue depths in our backpressure forwarding network
packets by including placeholder bits to artificially increase the advertised
queue depths. Similar techniques are described in previous work such as [7].



Thus, if the queuing delay were incorporated into admis-
sion control computation when starvation is not occurring,
F1 would have an unfair disadvantage, since F1 is expected
to have a higher per-packet delay, which would lead to a
correspondingly higher value passed into the admission control
function, and thus a lower admission rate. Section IV-C shows
goodput results for this example when using a linear delay
term.

For this reason, it is important to first detect whether
or not starvation is occurring before responding to it. Delay
should not be considered in the gradient unless there is a
high probability that starvation is truly occurring, or natural
asymmetry in latency can result in unfair treatment of flows.

III. ANTI-STARVATION ALGORITHM

ASAP effectively solves the starvation problem in back-
pressure forwarding by dynamically detecting starvation and
adding virtual packets to artificially increase the queue depths.
These virtual packets are dequeued last to ensure they do not
remove available capacity from ongoing flows. Starvation is
both detected and responded to by head-of-line queue delay.
We define this delay as the amount of time the packet at the
head of the queue has been at the head of the queue. Note
that this is different than the amount of time the packet at the
head of the queue has been in the queue. With this definition,
the sum of head-of-line queue delay over approximately one
queue-depth worth of packets is a measure of the total queue
delay amortized over the individual packets.

Starvation detection is based on monitoring the head-of-
line queue delay. When this delay surpasses a threshold,
the starvation reaction component of ASAP is triggered, and
virtual packets will be incrementally added to increase the
gradient, with the number of virtual packets computed based
on the continually increasing delay for the packet. When the
packet is sent, no additional virtual packets will be added
until/unless the next packet surpasses the threshold, which is
less likely because the virtual packets remain in the queue.

A. Starvation Detection

A primary goal of ASAP is to do no harm when starvation
is not occurring. Therefore, ASAP does not attempt to take
action until starvation is detected. In order to be effect at
detecting starvation under a wide range of network characteris-
tics, ASAP computes a starvation threshold dynamically using
estimated capacity, number of local queues, and maximum
expected packet size.

In particular, ASAP estimates the maximum expected head-
of-line queue delay for a packet. This is the serialization time
of the packet onto the link times the number of queues the
backpressure router must cycle through (since it’s possible for
multiple queues to use the same link as a next hop).

Let M be the max expected packet size in bits, Q be the
number of queues the backpressure router is servicing (one per
destination), and c be the expected capacity in bits/sec. We note
that IRON provides capacity estimates in real-time to ASAP
and specifies a maximum packet size of 1500 bytes. Let α
be a “safety factor” which forces ASAP to be cautious before
taking anti-starvation action, buffering any temporary queue

processing slow downs or ordering issues. This is set to 50 in
the ASAP system, which was based on experimental results.
We can then compute s(M, c) as the starvation threshold in
milliseconds (note the 1000 multiplier) as follows:

sα(M,Q, c) = 1000 · α ·Q · M
c

Once the head-of-line queue delay for a packet has crossed this
threshold, ASAP will trigger the starvation reaction algorithm.
To provide an general idea of this threshold, in the triangle
topology discussed in Section IV, with 10Mbps links, the
threshold is around 100ms.

B. Starvation Reaction

Once starvation is detected, ASAP responds by using
virtual packets to artificially increase the gradient. At the heart
of this algorithm is a function that converts queue delay into
virtual packets (more correctly, virtual bytes). There are three
major benefits to adding virtual packets in this way: (1) the
delay-to-bytes function provides fine-grained control of the
gradient and allows for rapid starvation relief, (2) by adding
virtual packets to the queue, rather than including a delay term
in the gradient computation, ASAP dramatically simplifies the
implementation and retains the low overhead “queue depth
only” spirit of backpressure forwarding, and (3) virtual packets
allow the artificially-increased gradient to remain in place even
after a starved packets is transmitted, allowing future packets
for the same destination to be transmitted more quickly.

ASAP uses a non-linear delay-to-bytes function, which
rapidly increases as the delay increases. This increase ensures
that starvation is alleviated quickly, since many messages, such
as TCP control messages, must be delivered in a timely fashion
for the protocol to function properly. Let d be the head-of-
line queue delay, and f(d) be the virtual bytes to add to
the queue. Let a be a scaling constant. ASAP defines f(d)
as follows, though we conjecture that this function ought to
remain flexible, and can even be defined differently at different
nodes, in order to allow an operationally-appropriate trade-off
between anti-starvation and throughput-optimality.

f(d) =

{
0, for d < sα(M,Q, c)
Min(P, a · d2), for d ≥ sα(M,Q, c)

Note that d is in ms and a is in (bytes / ms2). This allows
the result of f(d) to be in bytes. The a coefficient allows
for scaling; in the ASAP system we set a = 2 based on
experimental results. These bytes are not added all at once;
instead, they are incrementally added as d increases. Every
ASAP action interval (5 ms in our experiments), f(d) is
computed, any virtual bytes already added since the most
recent dequeue are subtracted from f(d), and ASAP adds the
difference as new virtual bytes. In other words, at any point
in time, a total of f(d) will have been added to address the
starved packet in question.

P is a cap on the number of virtual bytes to add, based
on all computed local gradients. This is to prevent unbounded
growth, which is particularly important if the threshold is high
causing a large amount of virtual bytes to be immediately
added when the threshold is crossed. P is computed such
that it will make the starved gradient slightly higher (5% in



our experiments) than all other local gradients, which is the
maximum needed to unstarve the packet.

Once a queue is built up with virtual packets, these packets
remain in the queue until they become the BPF-defined best
choice for transmission. In other words, the queue depth will
remain inflated until it becomes the highest gradient. At that
point, virtual packets will be dequeued until that queue depth
no longer has the largest gradient. If the system reaches an
equilibrium state, these virtual packets cause the queue depth
to stabilize at exactly the threshold where packets are not sent,
but where any additional packet added to the queue will be sent
quickly. Therefore, not only is the original starvation detected
by ASAP starvation detection sent rapidly, but any later packets
for the same flow will also be transmitted rapidly.

IV. EVALUATION

The primary goal of our evaluation is to show that ASAP
rapidly addresses starvation and does no harm in cases where
starvation is not occurring. We first discuss the methodology
used to evaluate ASAP and then present results.

ASAP is implemented within the larger IRON system, and
experiments are run on a local testbed. The testbed setup
contains a physical machine for each IRON node, all connected
to a highspeed switch. The IRON system framework can
emulate link delays and capacities. IRON is a backpressure
forwarding implementation capable of transporting data at
hundreds of megabits per second [6]. IRON is written in C++
and runs in user-space; the ASAP module resides in IRON and
continually monitors the available link capacity, queue depths,
and head-of-line queuing delays, and directly inserts virtual
packets into the monitored queues as appropriate.

We present results from running experiments with and
without ASAP to highlight ASAP’s ability to address star-
vation. As an additional point of comparison, we also imple-
mented a linear delay-term approach, which, as we discuss
in Section II, interacts poorly with queue-based admission
control. This approach tracks the head-of-line queuing delay
and adds that directly to the gradient computation.

The primary metric used for evaluation is goodput over
time. All graphs contain goodput on the y-axis and time into
the scenario on the x-axis, and were generated using the TRPR
tool [8]. Starvation is easy to visualize using these graphs, as
the goodput of a starved flow will go to zero. These graphs
also help visualize the capacity used by different flows.

(a) 3 node trian-
gle topology (b) Y-shaped topology

Fig. 3: Topologies used for evaluation scenarios

There are three scenarios used to highlight ASAP. The first
two use the triangle topology shown in Figure 3a and the third
uses the Y-shaped topology shown in Figure 3b.

A. Scenario 1 - Starvation of Small Flow

The first scenario operates over the triangle topology (Fig-
ure 3a), with all links set to a capacity of 10Mbps and delay of
10ms. There are numerous low-priority flows competing with
a single high-priority, low-rate flow. The experiment lasts for
around 90 seconds, with traffic described in the table below:

TABLE I: Scenario 1 Flow Definitions

Flow Group Time (Src,Dst) Priority Volume
1 (20 flows) 10-90 (1,2) Low 5Mbps
2 (1 flow) 15-50 (1,3) High 5Kbps

3 (20 flows) 50-90 (1,3) Low 5Mbps

No flows occur for the first 10 seconds to allow the system
to start up. Flow Group 1 is a set of low priority, high-rate flows
that are active the entire time (other than start up) and have the
potential to starve the low-rate flow in Flow Group 2, since
the queue at node 1 for destination node 2 will be perpetually
deeper than the queue at node 1 for destination node 3. Note
that even though Flow Group 1 is destined to 2, backpressure
routing will cause all paths to 2 to be utilized, optimizing
network throughput. Therefore, node 3 will be forwarding
traffic from node 1 destined to node 2. After 50 seconds, we
start Flow Group 3 destined to node 3 to evaluate whether
ASAP’s built-up virtual packets give unfair preference once
the period of starvation is over.

Figure 4a shows the goodput captured by nodes 2 and 3
without ASAP running. As desired, all flows in Flow Group 1
get equal priority and equal share of the available capacity less
IRON overhead (recall there is actually 20Mbps of capacity
available from 1 to 2, since there are two 10Mbps paths). When
Flow Group 3 starts, all flows from Flow Groups 1 and 3 get
equal share of capacity, again as desired. However, the goodput
graph shows that the flow in Flow Group 2 is being completely
starved.

Figure 4b shows the goodput at these nodes with ASAP
running. The goodput now clearly shows the low-rate flow in
Flow Group 2 operating for all 35 seconds during which it
was active. Therefore, ASAP is properly detecting starvation
and rapidly addressing it. Furthermore, the goodput after
Flow Group 2 ends matches the goodput without ASAP. This
highlights an important point: ASAP is not harming Flow
Groups 1 or 3 after Flow Group 2 has ended. This indicates
that ASAP is not inflating the gradient for extended periods of
time after the vulnerable flow has ended, and hence not doing
harm to other flows in its attempt to address starvation.

B. Scenario 2 - Starvation of TCP Traffic

The second scenario also operates over the triangle topol-
ogy (Figure 3a), with all links set to a capacity of 10Mbps
and delay of 10ms. Long lasting TCP flows are sent between
the nodes in a circular pattern as described in the traffic table
below. The experiment runs for about 50 seconds with the first
10 seconds left for initialization.



(a) Without ASAP, Flow Group 2 is completely starved. (b) ASAP prevents starvation of small flows.

Fig. 4: Scenario 1 experimental evaluation, including goodput observed at both destination nodes.

(a) Without ASAP, TCP ACKs for Flow 1 are starved when the
1 → 2 link is down.

(b) ASAP eliminates starvation.

Fig. 5: Scenario 2 experimental evaluation, including goodput observed at all three destination nodes.

TABLE II: Scenario 2 Flow Definitions

Flow Time (Src,Dst) Priority Volume
1 10-50 (1,2) Medium Max
2 10-50 (2,3) Medium Max
3 10-50 (3,1) Medium Max

Until around 30 seconds into the run (20 seconds after the
flows are started), the link between nodes 1 and 2 is down.
After 30 seconds, that link comes up. While the link is down,
the flow between 1 and 2 must traverse node 3. Also, the TCP
ACKs must traverse the path 2-3-1. These ACKs are competing
with data traffic flowing from 2 to 3, and therefore are at risk
of being starved at node 2, since the queue to destination 3 is
inherently deeper than the queue to destination 1.

Figure 5a shows the goodput captured by all nodes without
ASAP running. When the link between nodes 1 and 2 is down,
flow 1 is starved. This is due to the competition of the low-
rate TCP ACKs (which use significantly less capacity than
data) with the data components of the other flows.

Figure 5b shows the goodput captured by all nodes with
ASAP running. ASAP is able to detect the starvation of the
flow 1 TCP ACKs, increase the gradient appropriately using
virtual packets, and eliminate the starvation.

C. Scenario 3 - No Starvation in Y-Shaped Topology

The previous two scenarios shows that ASAP rapidly
detects and addresses starvation when it is occurring. This
third scenario shows that ASAP does no harm when starvation
is not occurring. Moreover, we compare ASAP to the linear
delay-term addition approach discussed in Section II-A. This
approach considers the delay term and queue depth in linear
combination to compute the gradient. We have assigned a
weight of 2 for the delay term, which is necessary to ensure
starvation is eliminated when it does occur. This scenario
shows that ASAP does no harm to admission control, whereas
the linear delay-term addition does. All links are set to a
capacity of 10Mbps and delay of 10ms, and the experiments
run for 100 seconds.

This scenario operates over a Y-shaped topology (Fig-
ure 3b). At the start of the experiment, two flows start at
nodes 2 and 3, both destined for node 1. Half way through
the experiment, an additional flow is added starting at node 3.
The end-to-end latency characteristics of this experiment are
detailed in Section II-A, and highlight why the direct delay
term addition results in unfair goodput between the flows. The
traffic is outlined in the following table:



(a) With ASAP, goodput is equal for equal priority flows (b) When using a linear delay term for BPF, the asymmetric
latencies described in Section II-A cause unfair goodput.

Fig. 6: Scenario 3 experimental evaluation, showing goodput observed at node 1 with ASAP and with BPF including a linear
delay term.

TABLE III: Scenario 3 Flow Definitions

Flow Time (Src,Dst) Priority Volume
1 10-100 (3,1) Medium 10Mbps
2 10-100 (2,1) Medium 10Mbps
3 55-100 (3,1) Medium 10Mbps

In this topology, starvation is not occurring. All packets are
being drained at steady rates according to the backpressure
algorithms. Figure 6a shows that all flows achieve equal
goodput values when running ASAP. Running this experiment
without ASAP results in identical goodput results. This shows
that the starvation detection mechanism is not triggering when
starvation is not occurring. ASAP is continually monitoring
the queues but is not taking action.

Figure 6b shows that using a linear delay addition term
directly in the gradient computation does not account for ex-
pected asymmetries in queue delay, resulting in unfair goodput
rates between flows. ASAP does not have this problem, since
it does not attempt to affect flows unless starvation is detected.

The results of these experiments show that ASAP is able to
effectively detect and address starvation without causing harm
when starvation is not occurring.

V. CONCLUSIONS AND FUTURE DIRECTIONS

ASAP is a new approach to avoiding starvation in back-
pressure networks with admission control. ASAP adds virtual
packets to artificially inflate the queue when starvation is
detected. The amount of virtual bytes is determined based on
a non-linear function of the head-of-line delay.

The use of virtual packets makes ASAP an inherently
simple extension to backpressure forwarding, where nodes
still only exchange queue depth information with neighbors.
Furthermore, the use of virtual packets is a graceful mechanism
for maintaining the artificially-increased queue depths long
enough to avoid future starvation of the same flow, while still
allowing quick reactions to changes in network conditions. By
determining the virtual bytes using a non-linear function and
only when starvation is occurring, ASAP avoids disrupting
existing admission control mechanisms based on queue depth.

One promising direction for further study is to investigate
other functions, including different functions across different
nodes, both for starvation detection and for converting head-of-
line delay into a number of virtual bytes. A further direction
is on extensions to add virtual bytes based on head-of-line
delay for all queues, as well as just for queues experiencing
starvation, as a means to reduce overall queuing delay.

REFERENCES

[1] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE/ACM Trans. Autom. Control, vol. 37,
no. 12, pp. 1936–1948, Dec. 1992.

[2] B. Ji, C. Joo, and N. Shroff, “Delay-based back-pressure scheduling in
multihop wireless networks,” IEEE/ACM Trans. Netw., vol. 21, no. 5, pp.
1539–1552, Oct. 2013.

[3] M. Neely, “Delay-based network utility maximization,” IEEE/ACM
Trans. Netw., vol. 21, no. 1, pp. 41–54, Feb. 2013.

[4] S. Vargaftik, I. Keslassy, and A. Orda, “No packet left behind: Avoiding
starvation in dynamic topologies,” IEEE/ACM Trans. Netw., vol. 25,
no. 4, pp. 2571–2584, Jun. 2017.

[5] M. Neely, E. Modiano, and C.-P. Li, “Fairness and optimal stochastic
control for heterogeneous networks,” IEEE/ACM Trans. Netw., vol. 16,
no. 2, pp. 396–409, Apr. 2008.

[6] Raytheon BBN Technologies, “Iron internal bbn technical report,” 2018.
[7] L. Huang and M. J. Neely, “Delay reduction via lagrange multipliers

in stochastic network optimization,” IEEE Transactions on Automatic
Control, vol. 56, no. 4, pp. 842–857, Apr. 2011.

[8] U.S. Naval Research Lab (NRL), “Trpr user’s
guide version 2.1b5,” Accessed April 2018,
https://downloads.pf.itd.nrl.navy.mil/docs/proteantools/trpr.html.

6


